思路:使用动态规划,dp[i][j]表示,将word1[:j]变成word2[:i]需要的步骤数。如果word1[j - 1] == word2[i - 1],表示有相同字符出现,只需要进行这个字符前面的匹配就可以dp[i][j] = dp[i - 1][j - 1]。如果word1[j - 1] != word2[i - 1],则在步数最少的前一次基础上进行加一,即dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1。
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
n1 = len(word1)
n2 = len(word2)
dp = [[0 for _ in range(n1 + 1)] for _ in range(n2 + 1)]
for i in range(n1 + 1):
dp[0][i] = i
for i in range(n2 + 1):
dp[i][0] = i
for i in range(1, n2 + 1):
for j in range(1, n1 + 1):
if word1[j - 1] == word2[i - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1