maskrcnn_benchmark 代码详解之 bounding_box.py

本文深入解析maskrcnn_benchmark框架中bounding_box.py文件的代码,探讨在目标检测网络中Bounding Box的重要作用及其具体实现,涉及深度学习相关知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:

  在目标检测网络模型当中,最常用到的便是Bounding Box,在maskrcnn_benchmark当中,bounding_box.py 实现了这一功能,其代码为:

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch

# transpose
FLIP_LEFT_RIGHT = 0
FLIP_TOP_BOTTOM = 1


class BoxList(object):
    """
    This class represents a set of bounding boxes.这个类用于保存bbox列表
    The bounding boxes are represented as a Nx4 Tensor.bbox是一个Nx4的张量
    In order to uniquely determine the bounding boxes with respect为了决定这个bbox列表是属于那一个图片的,本类还保存了一个图片的大小
    to an image, we also store the corresponding image dimensions.
    They can contain extra information that is specific to each bounding box, such as
    labels.本类还包含一个其他信息的map,用户可以用其来保存一些备用信息,例如标签,目标水平等
    """

    def __init__(self, bbox, image_size, mode="xyxy"):
        # 如果bbox是一个张量,得到bbox存在的设备,否则就指定设备为cpu
        device = bbox.device if isinstance(bbox, torch.Tensor) else torch.device("cpu")
        # 指定bbox为一个张量,并指定其设备和数据类型
        bbox = torch.as_tensor(bbox, dtype=torch.float32, device=device)
        # bbox的维度应为2:Nx4
        if bbox.ndimension() != 2:
            raise ValueError(
                "bbox should have 2 dimensions, got {}".format(bbox.ndimension())
            )
        # 如果bbox的倒数第一个维度不是4个边框信息,则说明有错误
        if bbox.size(-1) != 4:
            raise ValueError(
                "last dimension of bbox should have a "
                "size of 4, got {}".format(bbox.size(-1))
            )
        # 如果边框信息的格式不是"xyxy", "xywh"中的一种
        if mode not in ("xyxy", "xywh"):
            raise ValueError("mode should be 'xyxy' or 'xywh'")
        # 初始化Boxlist的各种属性
        self.bbox = bbox
        self.size = image_size  # (image_width, image_height)
        self.mode = mode
        self.extra_fields = {}

    # 增加额外的信息
    def add_field(self, field, field_data):
        self.extra_fields[field] = field_data

    # 从extra_fields中获取名为field的数据
    def get_field(self, field):
        return self.extra_fields[field]

    # 判断extra_fields是否有为field的数据
    def has_field(self, field):
        return field in self.extra_fields

    # 得到保存在extra_fields的所有数据的键值
    def fields(self):
        return list(self.extra_fields.keys())

    # 复制bbox中extra_fields的数据到本boxlist中
# Ultralytics YOLO 🚀, AGPL-3.0 license # Default training settings and hyperparameters for medium-augmentation COCO training task: detect # (str) YOLO task, i.e. detect, segment, classify, pose mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark # Train settings ------------------------------------------------------------------------------------------------------- model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml data: # (str, optional) path to data file, i.e. coco128.yaml epochs: 200 # (int) number of epochs to train for patience: 300 # (int) epochs to wait for no observable improvement for early stopping of training batch: 2 # (int) number of images per batch (-1 for AutoBatch) imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes save: True # (bool) save train checkpoints and predict results save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1) cache: True # (bool) True/ram, disk or False. Use cache for data loading device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu workers: 0 # (int) number of worker threads for data loading (per RANK if DDP) project: # (str, optional) project name name: # (str, optional) experiment name, results saved to 'project/name' directory exist_ok: False # (bool) whether to overwrite existing experiment pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] verbose: True # (bool) whether to print verbose output seed: 0 # (int) random seed for reproducibility deterministic: True # (bool) whether to enable deterministic mode single_cls: False # (bool) train multi-class data as single-class rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val' cos_lr: False # (bool) use cosine learning rate scheduler close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable) resume: False # (bool) resume training from last checkpoint amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training # Segmentation overlap_mask: True # (bool) masks should overlap during training (segment train only) mask_ratio: 4 # (int) mask downsample ratio (segment train only) # Classification dropout: 0.0 # (float) use dropout regularization (classify train only) # Val/Test settings ---------------------------------------------------------------------------------------------------- val: True # (bool) validate/test during training split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train' save_json: False # (bool) save results to JSON file save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions) conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val) iou: 0.7 # (float) intersection over union (IoU) threshold for NMS max_det: 300 # (int) maximum number of detections per image half: False # (bool) use half precision (FP16) dnn: False # (bool) use OpenCV DNN for ONNX inference plots: True # (bool) save plots during train/val # Prediction settings -------------------------------------------------------------------------------------------------- source: # (str, optional) source directory for images or videos show: False # (bool) show results if possible save_txt: False # (bool) save results as .txt file save_conf: False # (bool) save results with confidence scores save_crop: False # (bool) save cropped images with results show_labels: True # (bool) show object labels in plots show_conf: True # (bool) show object confidence scores in plots vid_stride: 1 # (int) video frame-rate stride stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False) line_width: # (int, optional) line width of the bounding boxes, auto if missing visualize: False # (bool) visualize model features augment: False # (bool) apply image augmentation to prediction sources agnostic_nms: False # (bool) class-agnostic NMS classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3] retina_masks: False # (bool) use high-resolution segmentation masks boxes: True # (bool) Show boxes in segmentation predictions # Export settings ------------------------------------------------------------------------------------------------------ format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats keras: False # (bool) use Kera=s optimize: False # (bool) TorchScript: optimize for mobile int8: False # (bool) CoreML/TF INT8 quantization dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes simplify: False # (bool) ONNX: simplify model opset: # (int, optional) ONNX: opset version workspace: 4 # (int) TensorRT: workspace size (GB) nms: False # (bool) CoreML: add NMS # Hyperparameters ------------------------------------------------------------------------------------------------------ lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3) lrf: 0.01 # (float) final learning rate (lr0 * lrf) momentum: 0.937 # (float) SGD momentum/Adam beta1 weight_decay: 0.0005 # (float) optimizer weight decay 5e-4 warmup_epochs: 3.0 # (float) warmup epochs (fractions ok) warmup_momentum: 0.8 # (float) warmup initial momentum warmup_bias_lr: 0.1 # (float) warmup initial bias lr box: 7.5 # (float) box loss gain cls: 0.5 # (float) cls loss gain (scale with pixels) dfl: 1.5 # (float) dfl loss gain pose: 12.0 # (float) pose loss gain kobj: 1.0 # (float) keypoint obj loss gain label_smoothing: 0.0 # (float) label smoothing (fraction) nbs: 64 # (int) nominal batch size hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction) hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction) hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction) degrees: 0.0 # (float) image rotation (+/- deg) translate: 0.1 # (float) image translation (+/- fraction) scale: 0.5 # (float) image scale (+/- gain) shear: 0.0 # (float) image shear (+/- deg) perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001 flipud: 0.0 # (float) image flip up-down (probability) fliplr: 0.5 # (float) image flip left-right (probability) mosaic: 1.0 # (float) image mosaic (probability) mixup: 0.0 # (float) image mixup (probability) copy_paste: 0.0 # (float) segment copy-paste (probability) # Custom config.yaml --------------------------------------------------------------------------------------------------- cfg: # (str, optional) for overriding defaults.yaml # Tracker settings ------------------------------------------------------------------------------------------------------ tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml] 这段代码什么意思
最新发布
05-12
<think>好的,我现在需要帮用户理解Ultralytics YOLO配置文件的参数和功能。用户之前已经询问过YOLOv8的损失函数,现在想进一步了解配置文件中的各个参数,包括训练、验证、预测和导出设置,以及超参数的意义。用户还提到了参考站内的引用,其中引用了官方文档和参数详解的内容,但用户指出这些引用仅供参考,并不是真正的需求,所以需要更多结合之前的问题和回答来分析。 首先,我需要回忆YOLO的配置文件结构。通常,YAML文件用于配置模型训练和验证的各种参数。用户提到的配置文件可能包括模型结构、数据路径、训练参数、优化器设置、数据增强、验证设置、预测选项、导出配置等部分。我需要逐一解释这些部分的关键参数。 接下来,用户之前的问题涉及到损失函数的调整,因此在解释配置文件时,可能需要关联到损失函数相关的参数,比如损失权重(cls、box、dfl)以及对应的超参数调整。此外,用户可能对如何通过修改配置文件来优化模型性能感兴趣,例如调整学习率、优化器类型、数据增强强度等。 需要注意的是,用户引用了官方文档中的安装命令和参数说明,但用户的实际需求是理解配置文件的具体参数含义,因此需要详细解释每个部分的作用,而不仅仅是安装步骤。比如,训练部分中的epochs、batch、imgsz、device等参数,以及验证中的save_json、conf等参数的意义。 此外,用户可能希望了解如何根据不同的任务需求调整这些参数,例如在训练时如何选择优化器,如何设置学习率调度,或者在验证时如何保存结果。同时,超参数部分如lr0、lrf、momentum、weight_decay等的作用也需要详细说明,以帮助用户进行调优。 最后,用户可能希望了解导出设置中的格式选项,比如如何将模型导出为ONNX或TensorRT格式,以及这些格式的适用场景。需要确保解释清晰,帮助用户根据实际应用选择合适的导出格式。 总结来说,我需要将配置文件分为几个主要部分,分别详细解释每个参数的功能和推荐值,同时结合用户之前关于损失函数的问题,指出哪些参数可能影响模型训练的效果和性能。此外,提供实际修改示例和注意事项,帮助用户避免常见错误,确保配置调整的有效性。</think>以下是对Ultralytics YOLO配置文件(`*.yaml`)参数的系统解析,结合代码实现逻辑与最佳实践: --- ### 一、核心配置模块 配置文件采用**模块化层级设计**,主要包含以下6大功能域: ```yaml # ultralytics/cfg/default.yaml 示例 task: detect # 任务类型 (detect/segment/classify/pose) mode: train # 运行模式 (train/val/predict/export) model: yolov8n.yaml# 模型架构配置文件 data: coco128.yaml # 数据集配置文件 ... ``` --- ### 二、训练参数详解 #### 1. 基础设置 ```yaml train: epochs: 100 # 训练总轮次 batch: 16 # 批次大小 (根据显存调整) imgsz: 640 # 输入图像尺寸 save: True # 保存检查点 device: 0 # 设备选择 (0=GPU0, 'cpu'=CPU) workers: 8 # 数据加载线程数 pretrained: True # 是否加载预训练权重[^1] ``` #### 2. 优化器配置 ```yaml optimizer: name: auto # 自动选择(SGD/Adam/AdamW) lr0: 0.01 # 初始学习率 lrf: 0.01 # 最终学习率(lr0*lrf) momentum: 0.937 # SGD动量参数 weight_decay: 0.0005 # L2正则化系数 ``` #### 3. 数据增强 ```yaml augment: hsv_h: 0.015 # 色调增强幅度 hsv_s: 0.7 # 饱和度增强幅度 hsv_v: 0.4 # 明度增强幅度 degrees: 0.0 # 旋转角度范围 translate: 0.1 # 平移比例 scale: 0.5 # 缩放比例 shear: 0.0 # 剪切幅度 perspective: 0.0 # 透视变换系数 flipud: 0.0 # 上下翻转概率 fliplr: 0.5 # 左右翻转概率 ``` --- ### 三、验证/预测配置 #### 1. 验证参数 ```yaml val: split: val # 数据集划分方式(val/test/train) save_json: False # 是否保存JSON格式结果 conf: 0.001 # 置信度阈值 iou: 0.6 # NMS的IoU阈值 plots: True # 生成可视化图表[^2] ``` #### 2. 预测参数 ```yaml predict: source: # 输入源 (文件/目录/URL等) show: False # 实时显示预测结果 save_txt: False # 保存标签文本 save_conf: False # 保存置信度分数 save_crop: False # 保存裁剪的检测目标 ``` --- ### 四、模型导出设置 ```yaml export: format: onnx # 导出格式 (onnx/torchscript/coreml) half: False # FP16量化 dynamic: False # ONNX动态轴 simplify: True # ONNX简化优化 opset: 12 # ONNX算子版本 workspace: 4 # TensorRT工作空间大小(GB) ``` --- ### 五、关键超参数解析 | 参数 | 作用域 | 推荐范围 | 影响维度 | |-------|--------|----------|----------| | `box` | 损失权重 | 5.0-7.5 | 定位精度 | | `cls` | 分类损失权重 | 0.3-0.7 | 分类准确率 | | `dfl` | 分布损失权重 | 1.0-2.0 | 边界框平滑度 | | `anchors` | 锚点数量 | 3-5 | 小目标检测能力 | | `warmup_epochs` | 热身阶段 | 1-3 | 训练稳定性 | --- ### 六、配置文件修改实践 1. **多GPU训练配置** ```yaml device: 0,1,2,3 # 使用4块GPU batch: 64 # 总batch=GPU数*单卡batch ``` 2. **学习率调度策略** ```yaml lr0: 0.01 lrf: 0.2 # 余弦退火调度:lr0 -> lr0*lrf ``` 3. **自定义数据增强** ```yaml augment: mosaic: 1.0 # 马赛克增强概率 mixup: 0.2 # MixUp混合增强概率 copy_paste: 0.5 # 目标复制粘贴增强 ``` --- ### 七、调试建议 1. 使用`python train.py --cfg default.yaml`验证配置有效性 2. 监控显存占用与`batch`大小的关系:`nvidia-smi -l 1` 3. 可视化数据增强效果: ```python from ultralytics import YOLO model = YOLO('yolov8n.yaml') model.train(data='coco128.yaml', augment=True) ``` --- ### 相关问题 1. 如何根据硬件配置调整batch size和workers数量? 2. YOLOv8支持哪些类型的自定义数据增强? 3. 导出ONNX模型时遇到算子不支持问题如何解决?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值