package lq.test;
import java.io.*;
import java.util.*;
//*********创建型模式***************
//factory method 1
//1具体的构造算法,和2构造出的具体产品由子类实现
interface Product {
}
//或者我也提供一个工厂的接口,由这个抽象类来继承它
abstract class Factory {
abstract public Product fmd();;
//我认为这个方方法的存在是,是对FactoryMethod方法的补充
//例如可以为生成的对象赋值,计算为生成对象应付何值,前后的日值
//且这些都是公用的,生成产品的最主要算法还是在FactoryMethod中,
//这个方法只是起辅助作用,这也是一种思维方法,将具体的算法实现在一个方法中
//而我不直接调用此方法,而使用另外的一个方法封装它,等到了更灵活的效果,而
//子类需实现的内容是FactoryMethod
//此方法是一个TemplateMethod
public Product creat(); {
Product pd = null;
System.out.println("before operation");;
pd = fmd();;
System.out.println("end operation");;
return pd;
}
}
class Product1 implements Product {
}
class Factory1 extends Factory {
public Product fmd(); {
Product pd = new Product1();;
return pd;
}
}
//FactroyMethod 2
//这种方式简单实用
interface Producta {
}
interface Factorya {
Producta create();;
}
class Producta1 implements Producta {}
class Factorya1 implements Factorya {
public Producta create(); {
Producta pda = null;
pda = new Producta1();;
return pda;
}
}
//AbstractFactory
//AbstractFactory与FactoryMethod的不同在于AbstractFactory创建多个产品
//感觉此模式没有什么大用
//当然可以还有更多的接口
interface Apda {}
interface Apdb {}
interface Afactory {
Apda createA();;
Apdb createB();;
}
class Apda1 implements Apda {}
class Apdb1 implements Apdb {}
//有几个接口就有几个对应的方法
class Afactory1 implements Afactory {
public Apda createA(); {
Apda apda = null;
apda = new Apda1();;
return apda;
}
public Apdb createB(); {
Apdb apdb = null;
apdb = new Apdb1();;
return apdb;
}
}
//Builder
//一个产品的生成分为生成部件和组装部件,不同的产品每个部件生成的方式不同
//而组装的方式相同,部件的生成抽象成接口方法,而组装的方法使用一个TemplateMethod方法
interface Cpda {}
class Cpda1 implements Cpda {}
interface BuilderI {
void buildPart1();;
void buildPart2();;
void initPd();;
Cpda getPd();;
}
abstract class BuilderA implements BuilderI {
Cpda cpda;
public Cpda getPd(); {
initPd();;
//对对象的内容进行设置
buildPart1();;
buildPart2();;
return cpda;
}
}
class Builder extends BuilderA {
public void buildPart1(); {
System.out.println(cpda);;
}
public void buildPart2(); {
System.out.println(cpda);;
}
public void initPd(); {
cpda = new Cpda1();;
}
}
//一个简单的生成产品的实现
//1
abstract class Fy {
public abstract void med1();;
static class Fy1 extends Fy {
public void med1(); {
}
}
public static Fy getInstance(); {
Fy fy = new Fy1();;
return fy;
// Fy fy = new Fy1(); {//这种匿名内部类是静态的!!
// public void med1(); {
// }
// };
// return fy;
}
}
//2
interface Pdd {}
class Pdd1 implements Pdd {}
abstract class Fya {
public static Pdd getPd(); {
Pdd pdd = new Pdd1();;
return pdd;
}
}
//Prototype 在java中就是clone,又包含深拷贝和浅拷贝
class CloneObja {
public CloneObja MyClone(); {
return new CloneObja();;
}
}
class CloneObjb {
public CloneObjb MyClone(); throws Throwable {
CloneObjb cobj = null;
cobj = (CloneObjb); pcl(this);;
return cobj;
}
//深度拷贝算法
private Object pcl(Object obj); throws Throwable {
ByteArrayOutputStream bao = new ByteArrayOutputStream(1000);;
ObjectOutputStream objo = new ObjectOutputStream(bao);;
objo.writeObject(obj);;
ByteArrayInputStream bai = new ByteArrayInputStream(bao.toByteArray(););;
ObjectInputStream obji = new ObjectInputStream(bai);;
Object objr = obji.readObject();;
return objr;
}
}
//Singleton
//一个类只有一个对象,例如一个线程池,一个cache
class Singleton1 {
public static Singleton1 instance = new Singleton1();;
private Singleton1(); {
}
public static Singleton1 getInstance(); {
return instance;
}
}
class Singleton2 {
public static Singleton2 instance;
private Singleton2(); {
}
// public static Singleton2 getInstance(); {
// if (instance == null); {
// instance = new Singleton2();;
// }
//
// return instance;
// }
public static Singleton2 getInstance(); {
synchronized(Singleton2.class); {
if (instance == null); {
instance = new Singleton2();;
}
}
return instance;
}
}
//**********结构型模式**********
//Adapter
//基本方法有两种,一种是使用引用一种使用继承
//将不符合标准的接口转成符合标准的接口,接口的修改主要是参数的增减,
//返回值类型,当然还有方法名
//感觉这就是封装的另一种表示形式,封装有用方法封装(在方法中调用功能方法);,
//用类封装(先传入功能方法所在的类的对象,通过调用此对象的功能方法);
//使用引用的形式
class Adapteea {
public void kk(); {}
}
interface Targeta {
String vv(int i, int k);;
}
class Adaptera implements Targeta{
Adapteea ade;
public Adaptera(Adapteea ade); {
this.ade = ade;
}
public String vv(int i, int k); {
//具体的业务方法实现在Adaptee中,这个方法
//只起到了接口转换的作用
//调用此方法是通过引用
ade.kk();;
return null;
}
}
//使用继承形式的
class Adapteeb {
public void kk(); {}
}
interface Targetb {
String vv(int i, int k);;
}
class Adapterb extends Adapteeb implements Targetb {
public String vv(int i, int k); {
//调用此方法是通过继承
kk();;
return null;
}
}
//Proxy
interface Subject {
void request();;
}
class realSubject implements Subject {
public void request(); {
//do the real business
}
}
class Proxy implements Subject {
Subject subject;
public Proxy(Subject subject); {
this.subject = subject;
}
public void request(); {
System.out.println("do something");;
subject.request();;
System.out.println("do something");;
}
}
//Bridge
//感觉就是多态的实现
interface Imp {
void operation();;
}
class Cimp1 implements Imp {
public void operation(); {
System.out.println("1");;
}
}
class Cimp2 implements Imp {
public void operation(); {
System.out.println("2");;
}
}
class Invoker {
Imp imp = new Cimp1();;
public void invoke(); {
imp.operation();;
}
}
//Composite
interface Component {
void operation();;
void add(Component component);;
void remove(Component component);;
}
class Leaf implements Component {
public void operation(); {
System.out.println("an operation");;
}
public void add(Component component); {
throw new UnsupportedOperationException();;
}
public void remove(Component component); {
throw new UnsupportedOperationException();;
}
}
class Composite implements Component {
List components = new ArrayList();;
public void operation(); {
Component component = null;
Iterator it = components.iterator();;
while (it.hasNext();); {
//不知道此component对象是leaf还是composite,
//如果是leaf则直接实现操作,如果是composite则继续递归调用
component = (Component); it.next();;
component.operation();;
}
}
public void add(Component component); {
components.add(component);;
}
public void remove(Component component); {
components.remove(component);;
}
}
//Decorator
//对一个类的功能进行扩展时,我可以使用继承,但是不够灵活,所以选用了
//另外的一种形式,引用与继承都可活得对对象的一定的使用能力,而使用引用将更灵活
//我们要保证是对原功能的追加而不是修改,否则只能重写方法,或使用新的方法
//注意concrete的可以直接new出来,
//而decorator的则需要用一个另外的decorator对象才能生成对象
//使用对象封装,和公用接口
//Decorator链上可以有多个元素
interface Componenta {
void operation();;
}
class ConcreteComponent implements Componenta {
public void operation(); {
System.out.println("do something");;
}
}
class Decorator implements Componenta {
private Componenta component;
public Decorator(Componenta component); {
this.component = component;
}
public void operation(); {
//do something before
component.operation();;
//do something after
}
}
//Facade
//非常实用的一种设计模式,我可以为外部提供感兴趣的接口
class Obj1 {
public void ope1(); {}
public void ope2(); {}
}
class Obj2 {
public void ope1(); {}
public void ope2(); {}
}
class Facade {
//我得到了一个简洁清晰的接口
public void fdMethod(); {
Obj1 obj1 = new Obj1();;
Obj2 obj2 = new Obj2();;
obj1.ope1();;
obj2.ope2();;
}
}
//Flyweight
//空
//**********行为型模式*************
//Chain of Responsibility
//与Decorator的实现形式相类似,
//Decorator是在原来的方法之上进行添加功能,而
//Chain则是判断信号如果不是当前处理的则转交个下一个节点处理
//我可以使用if分支来实现相同的效果,但是不够灵活,链上的每个节点是可以替换增加的,相对
//比较灵活,我们可以设计接口实现对节点的增删操作,而实现更方便的效果
//这个是一个链状的结构,有没有想过使用环状结构
interface Handler {
void handRequest(int signal);;
}
class CHandler1 implements Handler {
private Handler handler;
public CHandler1(Handler handler); {
this.handler = handler;
}
public void handRequest(int signal); {
if (signal == 1); {
System.out.println("handle signal 1");;
}
else {
handler.handRequest(signal);;
}
}
}
class CHandler2 implements Handler {
private Handler handler;
public CHandler2(Handler handler); {
this.handler = handler;
}
public void handRequest(int signal); {
if (signal == 2); {
System.out.println("handle signal 2");;
}
else {
handler.handRequest(signal);;
}
}
}
class CHandler3 implements Handler {
public void handRequest(int signal); {
if (signal == 3); {
System.out.println("handle signal 3");;
}
else {
throw new Error("can't handle signal");;
}
}
}
class ChainClient {
public static void main(String[] args); {
Handler h3 = new CHandler3();;
Handler h2 = new CHandler2(h3);;
Handler h1 = new CHandler1(h2);;
h1.handRequest(2);;
}
}
//Interpreter
//感觉跟Composite很类似,只不过他分文终结符和非终结符
//Template Method
abstract class TemplateMethod {
abstract void amd1();;
abstract void amd2();;
//此方法为一个Template Method方法
public void tmd(); {
amd1();;
amd2();;
}
}
//State
//标准型
//状态和操作不应该耦合在一起
class Contexta {
private State st;
public Contexta(int nst); {
changeStfromNum(nst);;
}
public void changeStfromNum(int nst); {
if (nst == 1); {
st = new CStatea1();;
}
else if (nst == 2); {
st = new CStatea2();;
}
throw new Error("bad state");;
}
void request(); {
st.handle(this);;
}
}
interface State {
void handle(Contexta context);;
}
class CStatea1 implements State {
public void handle(Contexta context); {
System.out.println("state 1");;
//也许在一个状态的处理过程中要改变状态,例如打开之后立即关闭这种效果
//context.changeStfromNum(2);;
}
}
class CStatea2 implements State {
public void handle(Contexta context); {
System.out.println("state 2");;
}
}
//工厂型
//根据状态不通生成不同的state
//class StateFactory {
// public static State getStateInstance(int num); {
// State st = null;
//
// if (num == 1); {
// st = new CStatea1();;
// }
// else if (num == 2); {
// st = new CStatea2();;
// }
//
// return st;
// }
//}
//Strategy
//跟Bridge相类似,就是一种多态的表示
//Visitor
//双向引用,使用另外的一个类调用自己的方法,访问自己的数据结构
interface Visitor {
void visitElement(Elementd element);;
}
class CVisitor implements Visitor {
public void visitElement(Elementd element); {
element.operation();;
}
}
interface Elementd {
void accept(Visitor visitor);;
void operation();;
}
class CElementd implements Elementd {
public void accept(Visitor visitor); {
visitor.visitElement(this);;
}
public void operation(); {
//实际的操作在这里
}
}
class Clientd {
public static void main(); {
Elementd elm = new CElementd();;
Visitor vis = new CVisitor();;
vis.visitElement(elm);;
}
}
//Iteraotr
//使用迭代器对一个类的数据结构进行顺序迭代
interface Structure {
interface Iteratora {
void first();;
boolean hasElement();;
Object next();;
}
}
class Structure1 implements Structure {
Object[] objs = new Object[100];
//使用内部类是为了对Struture1的数据结构有完全的访问权
class Iteratora1 implements Iteratora {
int index = 0;
public void first(); {
index = 0;
}
public boolean hasElement(); {
return index < 100;
}
public Object next(); {
Object obj = null;
if (hasElement();); {
obj = objs[index];
index++;
}
return obj;
}
}
}
//Meditor
class A1 {
public void operation1(); {}
public void operation2(); {}
}
class A2 {
public void operation1(); {}
public void operation2(); {}
}
class Mediator {
A1 a1;
A2 a2;
public Mediator(A1 a1, A2 a2); {
this.a1 = a1;
this.a2 = a2;
}
//如果我想实现这个功能我可能会把他放在A1中
//但是这样耦合大,我不想在A1中出现A2对象的引用,
//所以我使用了Mediator作为中介
public void mmed1(); {
a1.operation1();;
a2.operation2();;
}
public void mmed2(); {
a2.operation1();;
a1.operation2();;
}
}
//Command
//我认为就是将方法转换成了类
class Receiver {
public void action1(); {}
public void action2(); {}
}
interface Command {
void Execute();;
}
class CCommand1 implements Command {
private Receiver receiver;
public CCommand1(Receiver receiver); {
this.receiver = receiver;
}
public void Execute(); {
receiver.action1();;
}
}
class CCommand2 implements Command {
private Receiver receiver;
public CCommand2(Receiver receiver); {
this.receiver = receiver;
}
public void Execute(); {
receiver.action2();;
}
}
//Observer
//在这里看似乎这个模式没有什么用
//但是如果我有一个线程监控Subject,如果Subject的状态
//发生了变化,则更改Observer的状态,并出发一些操作,这样就有实际的意义了
//Observer与Visitor有相似的地方,都存在双向引用
//Subject可以注册很多Observer
interface Subjectb {
void attach(Observer observer);;
void detach(Observer observer);;
void mynotify();;
int getState();;
void setState(int state);;
}
class Subjectb1 implements Subjectb {
List observers = new ArrayList();;
int state;
public void attach(Observer observer); {
observers.add(observer);;
}
public void detach(Observer observer); {
observers.remove(observer);;
}
public void mynotify(); {
Observer observer = null;
Iterator it = observers.iterator();;
while (it.hasNext();); {
observer = (Observer); it.next();;
observer.Update();;
}
}
public int getState(); {
return state;
}
public void setState(int state); {
this.state = state;
}
}
interface Observer {
void Update();;
}
class Observer1 implements Observer {
Subjectb subject;
int state;
public Observer1(Subjectb subject); {
this.subject = subject;
}
public void Update(); {
this.state = subject.getState();;
}
public void operation(); {
//一些基于state的操作
}
}
//Memento
//感觉此模式没有什么大用
class Memento {
int state;
public int getState(); {
return state;
}
public void setState(int state); {
this.state = state;
}
}
class Originator {
int state;
public void setMemento(Memento memento); {
state = memento.getState();;
}
public Memento createMemento(); {
Memento memento = new Memento();;
memento.setState(1);;
return memento;
}
public int getState(); {
return state;
}
public void setState(int state); {
this.state = state;
}
}
class careTaker {
Memento memento;
public void saverMemento(Memento memento); {
this.memento = memento;
}
public Memento retrieveMemento(); {
return memento;
}
}
//程序最终还是顺序执行的,是由不通部分的操作拼接起来的
//将不同类的代码拼接起来是通过引用实现的,有了引用我就
//相当于有了一定访问数据结构和方法的能力,这与写在类内部
//差不多,例如我想将一个类中的一个方法抽离出去,因为这个方法依赖与此类的数据和其他方法
//直接将代码移走是不行的,但如果我们拥有了此类对象的引用,则与写在此类
//内部无异,所以我们拥有了引用就可以将此方法移出
public class tt1 {
public static void main(String[] args); {
}
}