Clothes

A. Clothes
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

A little boy Gerald entered a clothes shop and found out something very unpleasant: not all clothes turns out to match. For example, Gerald noticed that he looks rather ridiculous in a smoking suit and a baseball cap.

Overall the shop sells n clothing items, and exactly m pairs of clothing items match. Each item has its price, represented by an integer number of rubles. Gerald wants to buy three clothing items so that they matched each other. Besides, he wants to spend as little money as possible. Find the least possible sum he can spend.


Input

The first input file line contains integers n and m — the total number of clothing items in the shop and the total number of matching pairs of clothing items ().

Next line contains n integers ai (1 ≤ ai ≤ 106) — the prices of the clothing items in rubles.

Next m lines each contain a pair of space-separated integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi). Each such pair of numbers means that the ui-th and the vi-th clothing items match each other. It is guaranteed that in each pair ui and vi are distinct and all the unordered pairs (ui, vi) are different.


Output

Print the only number — the least possible sum in rubles that Gerald will have to pay in the shop. If the shop has no three clothing items that would match each other, print "-1" (without the quotes).


Sample test(s)
Input
3 3
1 2 3
1 2
2 3
3 1
Output
6
Input
3 2
2 3 4
2 3
2 1
Output
-1
Input
4 4
1 1 1 1
1 2
2 3
3 4
4 1
Output
-1
Note

In the first test there only are three pieces of clothing and they all match each other. Thus, there is only one way — to buy the 3 pieces of clothing; in this case he spends 6 roubles.

The second test only has three pieces of clothing as well, yet Gerald can't buy them because the first piece of clothing does not match the third one. Thus, there are no three matching pieces of clothing. The answer is -1.

In the third example there are 4 pieces of clothing, but Gerald can't buy any 3 of them simultaneously. The answer is -1.

大致题意:商店中有n件衣服,分别有n个价格,给出m组样例,分别表示每个衣服的所对应的衣服号数,问题是求能够匹配的三件衣服所需要的最少的钱数。

解决方法:直接用暴力搜索就可以求出,注意最大值的范围用无穷大oxffffff。

#include <stdio.h>
int cloth[101][101], price[101];
int main()
{
    int n, m, i, j, k, x, y, cost, min;
    while(scanf("%d%d", &n, &m)!=EOF)
    {
        cost=0; min=0xffffff;
        for(i=1; i<=n; i++)
            scanf("%d", &price[i]);
        for(i=0; i<m; i++)
        {
             scanf("%d%d", &x, &y);
             cloth[x][y]=cloth[y][x]=1;
        }

            for(i=1; i<=n; i++)
            {
                for(j=1; j<=n; j++)
                {
                    if(i!=j)
                    {
                        for(k=1; k<=n; k++)
                        {
                            if(i!=k&&k!=j)
                            {
                               if(cloth[i][j]&&cloth[j][k]==1&&cloth[k][i]==1)
                               {
                                   cost=price[i]+price[j]+price[k];
                                   if(cost<min)
                                    min=cost;
                               }
                            }
                        }
                    }
                }
            }

        if(min==0xffffff)
            printf("-1\n");
        else
            printf("%d\n", min);
    }
    return 0;
}


内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值