220322

本文提出了一种有效扩展差分隐私到大型神经网络的方法,通过在公共数据上预训练模型来减少私人数据微调期间的可训练参数数量。在保持大型模型表达力的同时,仅对一小部分参数进行私人数据的微调,实现了领域适应过程中的最小训练干扰。研究还指出,选择精确的参数子集以优化差分隐私与准确性之间的权衡是未来研究的重要方向。
  1. Batch Normalization (BN) and its variants have have delivered tremendous success in combating the covariate shift induced by the training step of deep learning methods.
  2. We propose a simple yet effective method to scale up differential privacy to large neural networks at reasonable privacy budgets. Our key insight was to minimize the number of trainable parameters during private dataset finetuning, by leveraging additional public data. By pre-training large models on public data, we obtain a strong representation at no privacy cost. Next, finetuning a small subset of
    parameters on private data, we maintain the expressiveness of large models while introducing minimal training disruption during the process of domain adaptation.
    We note that our two proposed approaches – normalization transfer and convolution parameter transfer – albeit outperforming previous methods, are naive stabs-in-the-dark; an exploration into the precise parameter subset to choose in order to optimize over the fundamental privacy-accuracy tradeoff in differential privacy is likely to be a fruitful area of research.
    在这里插入图片描述
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值