导数

本文深入探讨了向量的导数概念,包括矩阵与向量的乘法,以及导数的计算。此外,还介绍了最小二乘法在解决线性方程组问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量的导数

AAAm×nm \times nm×n的矩阵,xxxn×1n \times 1n×1的列向量,则AxAxAxm×1m \times 1m×1的列向量,记作y⃗=A⋅x⃗\vec y = A \cdot \vec xy=Ax

A=[a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮am1am2⋯amn] x⃗=[x1x2⋮xn] y⃗=A⋅x⃗=[a11x1+a12x2+⋯+a1nxna21x1+a22x2+⋯+a2nxn⋮am1x1+am2x2+⋯+amnxn] A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \\ ~ \\ \vec x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \\ ~ \\ \vec y = A \cdot \vec x = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix} A=a11a21am1a12a22am2a1na2namn x=x1x2xn y=Ax=a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn

∂y⃗∂x⃗=∂A⋅x⃗∂x⃗=[a11x1+a12x2+⋯+a1nxnx1a21x1+a22x2+⋯+a2nxnx1⋯am1x1+a1m2x2+⋯+amnx1x1a11x1+a12x2+⋯+a1nxnx2a21x1+a22x2+⋯+a2nxnx2⋯am1x1+am2x2+⋯+amnxnx2⋮⋮⋮⋮a11x1+a12x2+⋯+a1nxnxna21x1+a22x2+⋯+a2nxnxn⋯am1x1+am2x2+⋯+amnxnxn] =[a11a21⋯am1a12a22⋯am2⋮⋮⋮⋮a1na2n⋯amn]=AT \frac{\partial \vec y}{\partial \vec x} = \frac{\partial A \cdot \vec x}{\partial \vec x} = \begin{bmatrix} \frac{a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n}{x_1} & \frac{a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n}{x_1} & \cdots & \frac{a_{m1}x_1 + a_{1m2}x_2 + \cdots + a_{mn}x_1}{x_1}\\ \frac{a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n}{x_2} & \frac{a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n}{x_2} & \cdots & \frac{a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n}{x_2}\\ \vdots & \vdots & \vdots& \vdots \\ \frac{a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n}{x_n} & \frac{a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n}{x_n} & \cdots & \frac{a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n}{x_n}\\ \end{bmatrix} \\ ~ \\ = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} = A^T xy=xAx=x1a11x1+a12x2++a1nxnx2a11x1+a12x2++a1nxnxna11x1+a12x2++a1nxnx1a21x1+a22x2++a2nxnx2a21x1+a22x2++a2nxnxna21x1+a22x2++a2nxnx1am1x1+a1m2x2++amnx1x2am1x1+am2x2++amnxnxnam1x1+am2x2++amnxn =a11a12a1na21a22a2nam1am2amn=AT

∂y⃗∂(x⃗)T=∂A⋅x⃗∂(x⃗)T=[a11x1+a12x2+⋯+a1nxnx1a11x1+a12x2+⋯+a1nxnx2⋯a11x1+a12x2+⋯+a1nx1xna21x1+a22x2+⋯+a2nxnx1a21x1+a22x2+⋯+a2nxnx2⋯a21x1+a22x2+⋯+a2nxnxn⋮⋮⋮⋮am1x1+am2x2+⋯+amnxnx1am1x1+am2x2+⋯+amnxnx2⋯am1x1+am2x2+⋯+amnxnxn] =[a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮am1am2⋯amn]=A \frac{\partial \vec y}{\partial (\vec x)^T} = \frac{\partial A \cdot \vec x}{\partial (\vec x)^T} = \begin{bmatrix} \frac{a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n}{x_1} & \frac{a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n}{x_2} & \cdots & \frac{a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_1}{x_n}\\ \frac{a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n}{x_1} & \frac{a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n}{x_2} & \cdots & \frac{a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n}{x_n}\\ \vdots & \vdots & \vdots& \vdots \\ \frac{a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n}{x_1} & \frac{a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n}{x_2} & \cdots & \frac{a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n}{x_n}\\ \end{bmatrix} \\ ~ \\ = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = A (x)Ty=(x)TAx=x1a11x1+a12x2++a1nxnx1a21x1+a22x2++a2nxnx1am1x1+am2x2++amnxnx2a11x1+a12x2++a1nxnx2a21x1+a22x2++a2nxnx2am1x1+am2x2++amnxnxna11x1+a12x2++a1nx1xna21x1+a22x2++a2nxnxnam1x1+am2x2++amnxn =a11a21am1a12a22am2a1na2namn=A

x⃗T⋅A=[x1x2⋯xn]⋅[a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮am1am2⋯amn]=[a11x1+a21x2+⋯+am1xna12x1+a22x2+⋯+am2xn⋯a1nx1+a2nx2+⋯+amnxn] ∂(x⃗T⋅A)∂x⃗=[a11x1+a21x2+⋯+am1xnx1a12x1+a22x2+⋯+am2xnx1⋯a1nx1+a2nx1+⋯+amnxnx1a11x1+a21x2+⋯+am1xnx2a12x1+a22x2+⋯+am2xnx2⋯a1nx1+a2nx2+⋯+amnxnx2⋮⋮⋮⋮a11x1+a21x2+⋯+am1xnxna12x1+a22x1+⋯+am2xnxn⋯a1nx1+a2nx1+⋯+amnxnxn] =[a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮am1am2⋮amn]=A {\vec x}^T \cdot A = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \\ = \begin{bmatrix} a_{11}x_1+ a_{21}x_2 + \cdots + a_{m1}x_n & a_{12}x_1+ a_{22}x_2 + \cdots + a_{m2}x_n & \cdots & a_{1n}x_1+ a_{2n}x_2 + \cdots + a_{mn}x_n \end{bmatrix} \\ ~ \\ \frac{\partial ({\vec x}^T \cdot A)}{\partial \vec x} = \begin{bmatrix} \frac{a_{11}x_1+ a_{21}x_2 + \cdots + a_{m1}x_n }{x_1} & \frac{a_{12}x_1+ a_{22}x_2 + \cdots + a_{m2}x_n}{x_1} & \cdots & \frac{a_{1n}x_1+ a_{2n}x_1 + \cdots + a_{mn}x_n}{x_1} \\ \\ \frac{a_{11}x_1+ a_{21}x_2 + \cdots + a_{m1}x_n }{x_2} & \frac{a_{12}x_1+ a_{22}x_2 + \cdots + a_{m2}x_n}{x_2} & \cdots & \frac{a_{1n}x_1+ a_{2n}x_2 + \cdots + a_{mn}x_n}{x_2} \\ \vdots & \vdots & \vdots & \vdots \\ \\ \frac{a_{11}x_1+ a_{21}x_2 + \cdots + a_{m1}x_n }{x_n} & \frac{a_{12}x_1+ a_{22}x_1 + \cdots + a_{m2}x_n}{x_n} & \cdots & \frac{a_{1n}x_1+ a_{2n}x_1 + \cdots + a_{mn}x_n}{x_n} \end{bmatrix} \\ ~ \\ =\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \vdots & a_{mn} \end{bmatrix} = A xTA=[x1x2xn]a11a21am1a12a22am2a1na2namn=[a11x1+a21x2++am1xna12x1+a22x2++am2xna1nx1+a2nx2++amnxn] x(xTA)=x1a11x1+a21x2++am1xnx2a11x1+a21x2++am1xnxna11x1+a21x2++am1xnx1a12x1+a22x2++am2xnx2a12x1+a22x2++am2xnxna12x1+a22x1++am2xnx1a1nx1+a2nx1++amnxnx2a1nx1+a2nx2++amnxnxna1nx1+a2nx1++amnxn =a11a21am1a12a22am2a1na2namn=A


AAAn×nn \times nn×n的矩阵,x⃗\vec xxn×1n \times 1n×1的列向量,记 y=(x⃗)T⋅A⋅x⃗y = (\vec x)^T \cdot A \cdot \vec xy=(x)TAx
A=[a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮an1an2⋯ann] x⃗=[x1x2⋮xn] (x⃗)T=[x1x2⋯xn] x⃗T⋅A=[x1x2⋯xn]⋅[a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮an1an2⋯ann]=[a11x1+a21x2+⋯+an1xna12x1+a22x2+⋯+an2xn⋯a1nx1+a2nx2+⋯+annxn] (x⃗)T⋅A⋅x⃗= (a11x1+a21x2+⋯+an1xn)x1+(a12x1+a22x2+⋯+an2xn)x2+⋯+(a1nx1+a2nx2+⋯+annxn)xn=yA = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \\ ~ \\ \vec x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \\ ~ \\ (\vec x)^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n\end{bmatrix} \\ ~ \\ {\vec x}^T \cdot A = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \\ = \begin{bmatrix} a_{11}x_1+ a_{21}x_2 + \cdots + a_{n1}x_n & a_{12}x_1+ a_{22}x_2 + \cdots + a_{n2}x_n & \cdots & a_{1n}x_1+ a_{2n}x_2 + \cdots + a_{nn}x_n \end{bmatrix} \\ ~ \\ (\vec x)^T \cdot A \cdot \vec x = \\ ~ \\ (a_{11}x_1+ a_{21}x_2 + \cdots + a_{n1}x_n)x_1 + (a_{12}x_1+ a_{22}x_2 + \cdots + a_{n2}x_n)x_2 + \cdots + (a_{1n}x_1+ a_{2n}x_2 + \cdots + a_{nn}x_n)x_n = y A=a11a21an1a12a22an2a1na2nann x=x1x2xn (x)T=[x1x2xn] xTA=[x1x2xn]a11a21an1a12a22an2a1na2nann=[a11x1+a21x2++an1xna12x1+a22x2++an2xna1nx1+a2nx2++annxn] (x)TAx= (a11x1+a21x2++an1xn)x1+(a12x1+a22x2++an2xn)x2++(a1nx1+a2nx2++annxn)xn=y

∂y∂x⃗=[(a11x1+a21x2+⋯+an1xn)x1+(a12x1+a22x2+⋯+an2xn)x2+⋯+(a1nx1+a2nx2+⋯+annxn)xnx1(a11x1+a21x2+⋯+an1xn)x1+(a12x1+a22x2+⋯+an2xn)x2+⋯+(a1nx1+a2nx2+⋯+annxn)xnx2⋮(a11x1+a21x2+⋯+an1xn)x1+(a12x1+a22x2+⋯+an2xn)x2+⋯+(a1nx1+a2nx2+⋯+annxn)xnxn] =[(2a11x1+a21x2+⋯+an1xn)+(a12x2)+⋯+a1nxn(a21x1)+(a12x1+2a22x2+⋯+an2xn)x2+⋯+a2nxn⋮(an1x1)+an2x2+⋯+(a1nx1+a2nx2+⋯+2annxn)] =[2a11x1+a21x2+(a12x2)+⋯+a1nxn+an1xn)a21x1+a12x1+2a22x2+⋯+a2nxn+an2xn⋮(an1x1)+a1nx1+an2x2+a2nx2+⋯+2annxn)] ==[2a11x1+(a21+a12)x2+⋯+(a1n+an1)xn)(a21+a12)x1+2a22x2+⋯+(a2n+an2)xn⋮(an1+a1n)x1+(an2+a2n)x2+⋯+2annxn)] AT+A=[a11a21⋯an1a12a22⋯an2⋮⋮⋮⋮a1na2n⋯ann]+[a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮an1an2⋯ann] =[2a11a12+a21⋯a1n+an1a21+a212a22⋯a2n+an2⋮⋮⋮⋮an1+an1an2+a2n⋯2ann] (AT+A)⋅x⃗=[2a11x1+(a12+a21)x2+⋯+(a1n+an1)xn(a21+a21)x1+2a22x2+⋯+(a2n+an2)xn⋮(an1+an1)x1+(an2+a2n)x2+⋯+2annxn] ∴∂y∂x⃗=(AT+A)⋅x⃗ \frac{\partial y}{\partial \vec x} = \begin{bmatrix} \frac{(a_{11}x_1+ a_{21}x_2 + \cdots + a_{n1}x_n)x_1 + (a_{12}x_1+ a_{22}x_2 + \cdots + a_{n2}x_n)x_2 + \cdots + (a_{1n}x_1+ a_{2n}x_2 + \cdots + a_{nn}x_n)x_n }{x_1} \\ \frac{(a_{11}x_1+ a_{21}x_2 + \cdots + a_{n1}x_n)x_1 + (a_{12}x_1+ a_{22}x_2 + \cdots + a_{n2}x_n)x_2 + \cdots + (a_{1n}x_1+ a_{2n}x_2 + \cdots + a_{nn}x_n)x_n}{x_2} \\ \vdots \\ \frac{(a_{11}x_1+ a_{21}x_2 + \cdots + a_{n1}x_n)x_1 + (a_{12}x_1+ a_{22}x_2 + \cdots + a_{n2}x_n)x_2 + \cdots + (a_{1n}x_1+ a_{2n}x_2 + \cdots + a_{nn}x_n)x_n }{x_n} \end{bmatrix} \\ ~ \\ =\begin{bmatrix} (2a_{11}x_1+ a_{21}x_2 + \cdots + a_{n1}x_n) + (a_{12}x_2) + \cdots + a_{1n}x_n \\ (a_{21}x_1) + (a_{12}x_1+ 2a_{22}x_2 + \cdots + a_{n2}x_n)x_2 + \cdots + a_{2n}x_n \\ \vdots \\ (a_{n1}x_1) +a_{n2}x_2 + \cdots + (a_{1n}x_1+ a_{2n}x_2 + \cdots + 2a_{nn}x_n) \end{bmatrix} \\ ~ \\ =\begin{bmatrix} 2a_{11}x_1+ a_{21}x_2 + (a_{12}x_2) +\cdots + a_{1n}x_n + a_{n1}x_n) \\ a_{21}x_1 +a_{12}x_1 + 2a_{22}x_2 + \cdots + a_{2n}x_n + a_{n2}x_n \\ \vdots \\ (a_{n1}x_1) +a_{1n}x_1 + a_{n2}x_2 + a_{2n}x_2 +\cdots + 2a_{nn}x_n) \end{bmatrix} \\ ~ \\ ==\begin{bmatrix} 2a_{11}x_1+ (a_{21} + a_{12})x_2 +\cdots + (a_{1n} + a_{n1})x_n) \\ (a_{21} +a_{12})x_1 + 2a_{22}x_2 + \cdots + (a_{2n} + a_{n2})x_n \\ \vdots \\ (a_{n1}+a_{1n})x_1 + (a_{n2}+ a_{2n})x_2 +\cdots + 2a_{nn}x_n) \end{bmatrix} \\ ~ \\ A^T + A =\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \\~ \\ = \begin{bmatrix} 2a_{11} & a_{12} + a_{21} & \cdots & a_{1n} + a_{n1}\\ a_{21} + a_{21}& 2a_{22} & \cdots & a_{2n} + a_{n2}\\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} + a_{n1}& a_{n2} + a_{2n}& \cdots & 2a_{nn} \end{bmatrix} \\ ~ \\ (A^T + A) \cdot \vec x = \begin{bmatrix} 2a_{11} x_1 + (a_{12} + a_{21})x_2 + \cdots + (a_{1n} + a_{n1})x_n\\ (a_{21} +a_{21})x_1+ 2a_{22} x_2+ \cdots +( a_{2n} + a_{n2})x_n\\ \vdots \\ (a_{n1} + a_{n1})x_1+ (a_{n2} + a_{2n})x_2 +\cdots + 2a_{nn}x_n \end{bmatrix} \\ ~ \\ \therefore \frac{\partial y}{\partial \vec x} = (A^T + A) \cdot \vec x xy=x1(a11x1+a21x2++an1xn)x1+(a12x1+a22x2++an2xn)x2++(a1nx1+a2nx2++annxn)xnx2(a11x1+a21x2++an1xn)x1+(a12x1+a22x2++an2xn)x2++(a1nx1+a2nx2++annxn)xnxn(a11x1+a21x2++an1xn)x1+(a12x1+a22x2++an2xn)x2++(a1nx1+a2nx2++annxn)xn =(2a11x1+a21x2++an1xn)+(a12x2)++a1nxn(a21x1)+(a12x1+2a22x2++an2xn)x2++a2nxn(an1x1)+an2x2++(a1nx1+a2nx2++2annxn) =2a11x1+a21x2+(a12x2)++a1nxn+an1xn)a21x1+a12x1+2a22x2++a2nxn+an2xn(an1x1)+a1nx1+an2x2+a2nx2++2annxn) ==2a11x1+(a21+a12)x2++(a1n+an1)xn)(a21+a12)x1+2a22x2++(a2n+an2)xn(an1+a1n)x1+(an2+a2n)x2++2annxn) AT+A=a11a12a1na21a22a2nan1an2ann+a11a21an1a12a22an2a1na2nann =2a11a21+a21an1+an1a12+a212a22an2+a2na1n+an1a2n+an22ann (AT+A)x=2a11x1+(a12+a21)x2++(a1n+an1)xn(a21+a21)x1+2a22x2++(a2n+an2)xn(an1+an1)x1+(an2+a2n)x2++2annxn xy=(AT+A)x

最小二乘法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值