背景:
经常在做framework相关开发时候,会有一些需求需要对系统的一些状态进行监听,获取相关的一些硬件信息,比如usb插入事件,耳机插拔等。这时候经常在framework层面我们只需要使用一下UEventObserver监听就可以了,比如耳机插拔就是WiredAccessoryManager的WiredAccessoryObserver里面onEvent会进行回调。

但请问这里的onEvent为啥就可以被回调呢?底层原理是什么呢?
Uevent 是什么?
Uevent (User space event)直译为“用户空间事件”。它是 Linux 内核的一种通信机制,专门用于向用户空间程序广播内核中发生的硬件设备相关事件。
你可以把它想象成一个安装在内核里的超级高效的内部广播系统。每当有新的硬件设备加入(如插入USB)、现有设备状态改变(如电量变化)或设备被移除(如拔出耳机)时,这个广播系统就会立刻拉起警报,高声通告:“注意!注意!有设备发生了变化!”,并附带上一份详细的“事件说明书”。
在 Android 这个复杂的生态中,正是依靠 Uevent 这个信使,系统服务才能对硬件变化做出即时反应,实现流畅的“热插拔”体验。
Uevent 的传递主要依靠一种高效的通信方式:Netlink Socket。
Netlink的介绍
Netlink是Linux系统中一种用户空间进程和Kernel进行通信的机制,通过这个机制,位于用户空间的进程,可接收来自Kernel的一些信息(例如Vold中用到的USB或SD的插拔消息),同时应用层也可通过Netlink向Kernel发送一些控制命令。
UEventObserver部分源码剖析
frameworks/base/core/java/android/os/UEventObserver.java
/**
* UEventObserver is an abstract class that receives UEvents from the kernel.<p>
*
* Subclass UEventObserver, implementing onUEvent(UEvent event), then call
* startObserving() with a match string. The UEvent thread will then call your
* onUEvent() method when a UEvent occurs that contains your match string.<p>
*
* Call stopObserving() to stop receiving UEvents.<p>
*
* There is only one UEvent thread per process, even if that process has
* multiple UEventObserver subclass instances. The UEvent thread starts when
* the startObserving() is called for the first time in that process. Once
* started the UEvent thread will not stop (although it can stop notifying
* UEventObserver's via stopObserving()).<p>
*
* @hide
*/
public abstract class UEventObserver {
private static final String TAG = "UEventObserver";
private static final boolean DEBUG = false;
private static UEventThread sThread;
private static native void nativeSetup();
private static native String nativeWaitForNextEvent();
private static native void nativeAddMatch(String match);
private static native void nativeRemoveMatch(String match);
@UnsupportedAppUsage
public UEventObserver() {
}
@Override
protected void finalize() throws Throwable {
try {
stopObserving();
} finally {
super.finalize();
}
}
private static UEventThread getThread() {
synchronized (UEventObserver.class) {
if (sThread == null) {
sThread = new UEventThread();
sThread.start();
}
return sThread;
}
}
private static UEventThread peekThread() {
synchronized (UEventObserver.class) {
return sThread;
}
}
/**
* Begin observation of UEvents.<p>
* This method will cause the UEvent thread to start if this is the first
* invocation of startObserving in this process.<p>
* Once called, the UEvent thread will call onUEvent() when an incoming
* UEvent matches the specified string.<p>
* This method can be called multiple times to register multiple matches.
* Only one call to stopObserving is required even with multiple registered
* matches.
*
* @param match A substring of the UEvent to match. Try to be as specific
* as possible to avoid incurring unintended additional cost from processing
* irrelevant messages. Netlink messages can be moderately high bandwidth and
* are expensive to parse. For example, some devices may send one netlink message
* for each vsync period.
*/
@UnsupportedAppUsage
public final void startObserving(String match) {
if (match == null || match.isEmpty()) {
throw new IllegalArgumentException("match substring must be non-empty");
}
final UEventThread t = getThread();
t.addObserver(match, this);
}
/**
* End observation of UEvents.<p>
* This process's UEvent thread will never call onUEvent() on this
* UEventObserver after this call. Repeated calls have no effect.
*/
@UnsupportedAppUsage
public final void stopObserving() {
final UEventThread t = peekThread();
if (t != null) {
t.removeObserver(this);
}
}
/**
* Subclasses of UEventObserver should override this method to handle
* UEvents.
*/
@UnsupportedAppUsage
public abstract void onUEvent(UEvent event);
主要看看使用的UEventThread执行部分代码:
private static final class UEventThread extends Thread {
/** Many to many mapping of string match to observer.
* Multimap would be better, but not available in android, so use
* an ArrayList where even elements are the String match and odd
* elements the corresponding UEventObserver observer */
private final ArrayList<Object> mKeysAndObservers = new ArrayList<Object>();
private final ArrayList<UEventObserver> mTempObserversToSignal =
new ArrayList<UEventObserver>();
public UEventThread() {
super("UEventObserver");
}
@Override
public void run() {
nativeSetup();//运行之后主要就是一个nativeSetup初始化
while (true) {
String message = nativeWaitForNextEvent();//等待轮询获取message
if (message != null) {
sendEvent(message);//发送Message
}
}
}
private void sendEvent(String message) {
synchronized (mKeysAndObservers) {
final int N = mKeysAndObservers.size();//遍历一个个的observer
for (int i = 0; i < N; i += 2) {
final String key = (String)mKeysAndObservers.get(i);
if (message.contains(key)) {
final UEventObserver observer =
(UEventObserver)mKeysAndObservers.get(i + 1);
mTempObserversToSignal.add(observer);
}
}
}
if (!mTempObserversToSignal.isEmpty()) {
final UEvent event = new UEvent(message);
final int N = mTempObserversToSignal.size();
for (int i = 0; i < N; i++) {
final UEventObserver observer = mTempObserversToSignal.get(i);
observer.onUEvent(event);//发送给各个observer
}
mTempObserversToSignal.clear();
}
}
public void addObserver(String match, UEventObserver observer) {
synchronized (mKeysAndObservers) {
mKeysAndObservers.add(match);
mKeysAndObservers.add(observer);//添加observer
nativeAddMatch(match);
}
}
当第一次启动这个线程的时候,会调用nativeSetup()方法做初始化,可以看出这个函数是native层来实现的,nativeSetup之后,进入一个while的死循环,不停的调用native层的nativeWaitForNextEvent()函数来获取Event事件,然后将Event事件转换成message,再通过sendEvent()将message事件传递给外设对应的Observer。
重点看看nativeSetup和nativeWaitForNextEvent看看它们底层是桌面实现的
nativeSetup方法
static void nativeSetup(JNIEnv *env, jclass clazz) {
if (!uevent_init()) {
jniThrowException(env, "java/lang/RuntimeException",
"Unable to open socket for UEventObserver");
}
}
uevent_init方法如下
hardware/libhardware_legacy/uevent.c
/* Returns 0 on failure, 1 on success */
int uevent_init()
{
struct sockaddr_nl addr;
int sz = 64*1024;
int s;
memset(&addr, 0, sizeof(addr));
addr.nl_family = AF_NETLINK;
addr.nl_pid = getpid();
addr.nl_groups = 0xffffffff;
s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_KOBJECT_UEVENT);
if(s < 0)
return 0;
setsockopt(s, SOL_SOCKET, SO_RCVBUFFORCE, &sz, sizeof(sz));
if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
close(s);
return 0;
}
fd = s;
return (fd > 0);
}
这里可以这里核心就是创建一个PF_NETLINK的socket与内核进行通讯,接受来自内核的消息
nativeWaitForNextEvent
static jstring nativeWaitForNextEvent(JNIEnv *env, jclass clazz) {
char buffer[1024];
for (;;) {
int length = uevent_next_event(buffer, sizeof(buffer) - 1);//进行等待uevent事件
if (length <= 0) {
return NULL;
}
buffer[length] = '\0';
if (isMatch(buffer, length)) {
// Assume the message is ASCII.
jchar message[length];
for (int i = 0; i < length; i++) {
message[i] = buffer[i];
}
return env->NewString(message, length);
}
}
}
上面方法的核心就是uevent_next_event,它来不断的等待读取上面创建的socket中内核发来的消息。
uevent_next_event方法如下
hardware/libhardware_legacy/uevent.c
int uevent_next_event(char* buffer, int buffer_length)
{
while (1) {
struct pollfd fds;
int nr;
fds.fd = fd;
fds.events = POLLIN;
fds.revents = 0;
nr = poll(&fds, 1, -1);//进行poll等待
if(nr > 0 && (fds.revents & POLLIN)) {
int count = recv(fd, buffer, buffer_length, 0);//读取socket数据
if (count > 0) {
struct uevent_handler *h;
pthread_mutex_lock(&uevent_handler_list_lock);
LIST_FOREACH(h, &uevent_handler_list, list)
h->handler(h->handler_data, buffer, buffer_length);
pthread_mutex_unlock(&uevent_handler_list_lock);
return count;
}
}
}
// won't get here
return 0;
}
UEventObserver源码剖析总结图如下:

更多framework实战开发,请关注下面“千里马学框架”
1583

被折叠的 条评论
为什么被折叠?



