Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 47896 Accepted Submission(s): 21158
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.

Note: the number of first circle should always be 1.

Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in
lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
分析:dfs求解,相邻两个数素数的判定(当前数加上之前一个数进行判定,第一个数和最后一个数进行判定)
AC代码:
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=20+1;
int vis[maxn];
int a[maxn];
int n;
bool is_prime(int i1,int i2){
for(int j=2;j<=sqrt(i1+i2);j++)
if((i2+i1)%j==0)return false ;
return true;
}
void dfs(int cur){
if(cur>n && is_prime(a[1],a[n])){
printf("%d",a[1]);
for(int i=2;i<=n;i++)
printf(" %d",a[i]);
printf("\n");
}
for(int i=1;i<=n;i++){
if(!vis[i]){
if(is_prime(a[cur-1],i)){
a[cur]=i;
vis[i]=1;
dfs(cur+1);
vis[i]=0;
}
}
}
}
int main(){
int cnt=0;
while(scanf("%d",&n)==1){
memset(vis,0,sizeof(vis));
a[1]=1;
vis[1]=1;
printf("Case %d:\n",++cnt);
dfs(2);
printf("\n");
}
return 0;
}