技术难点:
整合文本、图像、传感器数据时,需保持实时性与准确性的平衡.
代码示例(多模态特征融合):
import torch
from torchvision import models
# 图像特征提取
image_model = models.resnet50(pretrained=True)
image_model.eval()
# 文本特征提取
text_model = AutoModel.from_pretrained("deepseek-llm-7b")
# 融合逻辑
def multimodal_fusion(image_tensor, text_input):
with torch.no_grad():
img_feats = image_model(image_tensor).mean(dim=1)
text_feats = text_model(**text_input).last_hidden_state.mean(dim=1)
return torch.cat([img_feats, text_feats], dim=1)
实际案例:
DeepSeek 为某能源公司开发设备健康管理系统,融合红外图像与传感器数据,故障预测准确率达 92%,维护成本降低 40%