未归一化的比较: training on cpu epoch 1, loss 0.0091, train acc 0.104, test acc 0.100, time 61.8 sec epoch 2, loss 0.0053, train acc 0.464, test acc 0.611, time 59.1 sec epoch 3, loss 0.0034, train acc 0.652, test acc 0.557, time 61.1 sec epoch 4, loss 0.0029, train acc 0.710, test acc 0.645, time 58.6 sec epoch 5, loss 0.0025, train acc 0.750, test acc 0.732, time 58.9 sec epoch 6, loss 0.0023, train acc 0.776, test acc 0.778, time 58.1 sec epoch 7, loss 0.0021, train acc 0.794, test acc 0.801, time 58.4 sec epoch 8, loss 0.0019, train acc 0.812, test acc 0.778, time 58.1 sec epoch 9, loss 0.0018, train acc 0.823, test acc 0.815, time 61.2 sec epoch 10, loss 0.0018, train acc 0.832, test acc 0.823, time 68.8 sec
批量归一化与未归一化的比较
最新推荐文章于 2025-01-05 17:46:25 发布