You have a garland consisting of nn lamps. Each lamp is colored red, green or blue. The color of the ii-th lamp is sisi ('R', 'G' and 'B' — colors of lamps in the garland).
You have to recolor some lamps in this garland (recoloring a lamp means changing its initial color to another) in such a way that the obtained garland is nice.
A garland is called nice if any two lamps of the same color have distance divisible by three between them. I.e. if the obtained garland is tt, then for each i,ji,j such that ti=tjti=tj should be satisfied |i−j| mod 3=0|i−j| mod 3=0. The value |x||x| means absolute value of xx, the operation x mod yx mod y means remainder of xx when divided by yy.
For example, the following garlands are nice: "RGBRGBRG", "GB", "R", "GRBGRBG", "BRGBRGB". The following garlands are not nice: "RR", "RGBG".
Among all ways to recolor the initial garland to make it nice you have to choose one with the minimum number of recolored lamps. If there are multiple optimal solutions, print any of them.
Input
The first line of the input contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of lamps.
The second line of the input contains the string ss consisting of nn characters 'R', 'G' and 'B' — colors of lamps in the garland.
Output
In the first line of the output print one integer rr — the minimum number of recolors needed to obtain a nice garland from the given one.
In the second line of the output print one string tt of length nn — a nice garland obtained from the initial one with minimum number of recolors. If there are multiple optimal solutions, print any of them.
Examples
input
Copy
3 BRB
output
Copy
1 GRB
input
Copy
7 RGBGRBB
output
Copy
3 RGBRGBR
思路:一共有6种情况,选出一个改变最小的
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
char a[200005];
char b[200005];
char c[200005];
int main() {
int n;
cin>>n;
scanf("%s",b);
int len=strlen(b);
strcpy(a,b);
int maxn=999999;
int s=0;
for(int t=0; t<len; t+=3) {
if(a[t]!='R'&&t<len) {
a[t]='R';
s++;
}
if(a[t+1]!='G'&&t+1<len) {
a[t+1]='G';
s++;
}
if(a[t+2]!='B'&&t+2<len) {
a[t+2]='B';
s++;
}
}
if(s<maxn) {
maxn=s;
strcpy(c,a);
}
strcpy(a,b);
s=0;
for(int t=0; t<len; t+=3) {
if(a[t]!='R'&&t<len) {
a[t]='R';
s++;
}
if(a[t+1]!='B'&&t+1<len) {
a[t+1]='B';
s++;
}
if(a[t+2]!='G'&&t+2<len) {
a[t+2]='G';
s++;
}
}
if(s<maxn) {
maxn=s;
strcpy(c,a);
}
strcpy(a,b);
s=0;
for(int t=0; t<len; t+=3) {
if(a[t]!='G'&&t<len) {
a[t]='G';
s++;
}
if(a[t+1]!='R'&&t+1<len) {
a[t+1]='R';
s++;
}
if(a[t+2]!='B'&&t+2<len) {
a[t+2]='B';
s++;
}
}
if(s<maxn) {
maxn=s;
strcpy(c,a);
}
strcpy(a,b);
s=0;
for(int t=0; t<len; t+=3) {
if(a[t]!='G'&&t<len) {
a[t]='G';
s++;
}
if(a[t+1]!='B'&&t+1<len) {
a[t+1]='B';
s++;
}
if(a[t+2]!='R'&&t+2<len) {
a[t+2]='R';
s++;
}
}
if(s<maxn) {
maxn=s;
strcpy(c,a);
}
strcpy(a,b);
s=0;
for(int t=0; t<len; t+=3) {
if(a[t]!='B'&&t<len) {
a[t]='B';
s++;
}
if(a[t+1]!='G'&&t+1<len) {
a[t+1]='G';
s++;
}
if(a[t+2]!='R'&&t+2<len) {
a[t+2]='R';
s++;
}
}
if(s<maxn) {
maxn=s;
strcpy(c,a);
}
strcpy(a,b);
s=0;
for(int t=0; t<len; t+=3) {
if(a[t]!='B'&&t<len) {
a[t]='B';
s++;
}
if(a[t+1]!='R'&&t+1<len) {
a[t+1]='R';
s++;
}
if(a[t+2]!='G'&&t+2<len) {
a[t+2]='G';
s++;
}
}
if(s<maxn) {
maxn=s;
strcpy(c,a);
}
cout<<maxn<<endl;
puts(c);
return 0;
}

探讨了如何通过最少的颜色更改,使灯串中相同颜色的灯泡间距为三的倍数,实现灯串的美化。该算法考虑了六种可能的情况,以找到最优解。
592

被折叠的 条评论
为什么被折叠?



