题意:给了一个长度为2n2n的01串,现在对该串相邻两位进行^, |, &^, |, &中某种操作,形成一个长度为2n−12n−1的串,一直操作下去直到串长为1。现问一共3n3n种操作组合中有多少能使得该串最后答案为1?
大致思路:可以直接暴力搞,把全为0的串剪了,跑的飞快,似乎是因为答案本身比较小?
正解是先将最后四位暴力打表打出来,暴力dfs到最后4位的时候直接查表.
#pragma GCC optimize("Ofast,no-stack-protector")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
using namespace std;
const int N = (1 << 18) + 10;
int n, num[20][N], tmp, ans;
char s[N];
int cal(int op, int x, int y) {
if (!op) return x & y;
else if (op == 1) return x ^ y;
else return x | y;
}
void dfs(int deep) {
tmp = 0;
for (int i = 0; i < (1 << deep); i++)
tmp += num[deep][i];
if (!tmp) return;
if (!deep) {
ans++;
return;
}
for (int op = 0; op < 3; op++) {
for (int i = 0; i < 1 << (deep - 1); i++) num[deep - 1][i] = cal(op, num[deep][i << 1], num[deep][i << 1 | 1]);
dfs(deep - 1);
}
}
int main() {
scanf("%d%s", &n, s);
for (int i = 0; i < (1 << n); i++) num[n][i] = s[i] - '0';
dfs(n);
printf("%d\n", ans);
}