
论文
文章平均质量分 96
醪糟小丸子
这个作者很懒,什么都没留下…
展开
-
量化理解(Google量化白皮书《Quantizing deep convolutional networks for efficient inference: A whitepaper》)
一、什么是量化?为什么要量化?在深度神经网络模型应用中,量化是削减模型大小的一种常用方法。实际上就是把高位宽表示的权值和激活值用更低位宽来表示。为什么要削减模型,是因为硬件平台的自身性能不理想,如计算力低,内存、电量消耗等限制,导致模型推断速度慢、功耗高。 而定点运算指令比浮点运算指令在单位时间内能处理更多数据,同时,量化后的模型可以减少存储空间。当然,也可以将量化后的模型部署在高效的定制化计算平台上以达到更快的推断速度。二、有哪些量化方法?怎样量化?具体的量化方案有以下几种:1.Uniform A原创 2020-07-23 19:30:09 · 12804 阅读 · 3 评论 -
【论文解读】——基于多尺度卷积网络的遥感目标检测研究(姚群力,胡显,雷宏)
【论文解读】——基于多尺度卷积网络的遥感目标检测研究(姚群力,胡显,雷宏)该文针对现有遥感图像目标检测算法对于复杂场景下多尺度目标检测精度较低、泛化能力差的问题,提出了一种多尺度卷积神经网络遥感目标检测框架———MSCNN。1.引言遥感目标自动检测技术不仅是一种实现遥感目标自动分类和定位的智能化数据分析方法,还是遥感图像解译领域的重要研究方向之一。传统的遥感图像目标检测方法是根据人工经验设...原创 2020-05-07 12:10:18 · 3116 阅读 · 0 评论