6-1 汉诺塔

汉诺(Hanoi)塔问题是一个经典的递归问题。

设有A、B、C三个塔座;开始时,在塔座A上有若干个圆盘,这些圆盘自下而上,由大到小地叠在一起。要求将塔座A上的圆盘移到塔座B上,并仍按同样顺序叠放。在移动过程中要求遵守如下规则:

  • 每次只能移动一个圆盘;
  • 任何时刻都不允许将较大的圆盘压在较小的圆盘之上;
  • 在满足前两条规则的前提下,可将圆盘移至A、B、C中任何一塔座上。                                

 

  •  例如,3个圆盘的初始状态如下

则移动过程如下:
A->B
A->C
B->C
A->B
C->A
C->B
A->B

要求实现一个递归函数,模拟输出n(1<=n<=8)个圆盘从塔座A借助塔座C移动到塔座B上的过程(用A->B表示将圆盘从A移到B,其他类似)。

函数接口定义:

 
void hanoi(int n, char from, char to, char by);

其中参数 n是圆盘数 、from是原来叠放圆盘的塔座 、to是最终叠放圆盘的塔座 、by是可借助的塔座。

裁判测试程序样例:

 
#include<iostream>
using namespace std;

//将n个圆盘借助by从from移到to
void hanoi(int n, char from, char to, char by);

//输入n,输出将原来在A上的n个圆盘借助C移动到B上的移动过程,控制到文件尾
int main() {
    int n, cnt=0;
    while(cin>>n) {
        cnt++;
        if (cnt>1) cout<<endl;
        hanoi(n, 'A', 'B', 'C');
    }
    return 0;
}

输入样例:

3
4

输出样例:

A->B
A->C
B->C
A->B
C->A
C->B
A->B

A->C
A->B
C->B
A->C
B->A
B->C
A->C
A->B
C->B
C->A
B->A
C->B
A->C
A->B
C->B

## 答案:

void hanoi(int n, char from, char to, char by)
{
    if(n == 1)
    {
         cout << from << "->" << to << endl;
        return;
    }
    else
    {
        hanoi(n-1,from,by,to);
        cout << from << "->" << to << endl;
        hanoi(n-1,by,to,from);
    }
}

## 思路:

汉诺塔问题是一个经典的递归问题,它描述了一种将一堆圆盘从一个塔座移动到另一个塔座的问题,同时需要遵守一些规则。问题的规则如下:

  1. 有三个塔座,通常称为A、B、C。
  2. 初始时,在塔座A上有若干个圆盘,这些圆盘自下而上,由大到小地叠在一起。
  3. 目标是将塔座A上的所有圆盘移动到塔座B上,并仍然按照相同的顺序叠放。
  4. 每次只能移动一个圆盘。
  5. 任何时刻都不允许将较大的圆盘放在较小的圆盘之上。
  6. 在满足前两条规则的前提下,可以将圆盘从A、B、C中的任何一个塔座移动到另一个塔座。

汉诺塔问题的目标是找到一种移动方案,将所有圆盘从起始塔座A移动到目标塔座B,中间可以借助辅助塔座C。这个问题可以通过递归算法来解决。

下面是一个详细解释递归函数 hanoi 的实现和工作原理:

void hanoi(int n, char from, char to, char by) {
    if (n == 1) {
        cout << from << "->" << to << endl;
        return;
    }
    
    // 递归步骤:
    // 1. 将前 n-1 个圆盘从起始塔座(from)经过目标塔座(by)移动到辅助塔座(by)上
    hanoi(n - 1, from, by, to);
    
    // 2. 将最大的圆盘从起始塔座(from)移动到目标塔座(to)上,并输出移动过程
    cout << from << "->" << to << endl;
    
    // 3. 将前 n-1 个圆盘从辅助塔座(by)经过起始塔座(from)移动到目标塔座(to)上
    hanoi(n - 1, by, to, from);
}

工作原理解释:

  1. 如果 n 等于 1,表示只有一个圆盘需要移动,直接将它从 from 移动到 to,并输出移动过程。

  2. 如果 n 大于 1,表示有多个圆盘需要移动。递归的过程如下:

    • 第一步:将前 n-1 个圆盘从起始塔座 from 经过目标塔座 to 移动到辅助塔座 by 上。这一步使用了递归调用,因为它也是一个汉诺塔问题,只不过规模减小了。

    • 第二步:将最大的圆盘从起始塔座 from 移动到目标塔座 to 上,并输出移动过程。这是实际的移动步骤。

    • 第三步:将前 n-1 个圆盘从辅助塔座 by 经过起始塔座 from 移动到目标塔座 to 上。这一步同样使用了递归调用。

这个递归过程会一直持续到只剩下一个圆盘需要移动,然后问题就会逐级返回,完成了所有圆盘的移动。

通过这种递归方法,你可以模拟汉诺塔问题的解决过程,并输出移动步骤。

### 关于汉诺塔问题在PTA平台上的解题思路 #### 经典汉诺塔问题概述 经典汉诺塔问题递归算法中的典型例子。这个问题源自一个古老的印度传说,涉及三根柱子和若干不同尺寸的圆盘。目标是从起始柱将所有圆盘按照相同规则转移到目标柱上,在整个过程中遵循特定约束条件[^3]。 #### 使用额外辅助柱优化转移过程 对于标准版本之外的情况——即引入第四根辅助柱之后,可以显著减少所需步数。传统方法下的最小移动次数为 \(2^n - 1\) ,其中 n 表示圆盘数量;而借助额外的一根柱子,则可以通过更高效的策略实现更快捷的目标达成路径。 #### 动态规划求解方案 考虑到新增加了一个可用资源(即第四根柱),此变种形式允许采用动态规划的方法来进行解答。具体来说,就是利用前几轮已经计算好的最优解来推导当前状态的最佳解决方案。这种方法不仅提高了效率而且简化了逻辑复杂度。 ```python def hanoi_with_extra_rod(n, source='A', target='C', helper1='B', helper2='D'): if n == 0: return [] elif n == 1: return [(source, target)] moves = [] # Move top (n-2) disks from A to B using C and D as helpers. moves += hanoi_with_extra_rod(n-2, source, helper1, helper2, target) # Move the next two largest discs directly between A -> D & D -> C or similar pattern depending on parity of N. moves.append((source, helper2)) moves.append((source, target)) moves.append((helper2, target)) # Finally move remaining (n-2) back onto final destination peg via alternate route involving all three other rods. moves += hanoi_with_extra_rod(n-2, helper1, target, source, helper2) return moves if __name__ == "__main__": print(hanoi_with_extra_rod(4)) # Example with four disks ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值