Description
Lavrenty, a baker, is going to make several buns with stuffings and sell them.
Lavrenty has n grams of dough as well as m different stuffing types. The stuffing types are numerated from 1 to m. Lavrenty knows that he has ai grams left of the i-th stuffing. It takes exactly bi grams of stuffing i and ci grams of dough to cook a bun with the i-th stuffing. Such bun can be sold for di tugriks.
Also he can make buns without stuffings. Each of such buns requires c0 grams of dough and it can be sold for d0 tugriks. So Lavrenty can cook any number of buns with different stuffings or without it unless he runs out of dough and the stuffings. Lavrenty throws away all excess material left after baking.
Find the maximum number of tugriks Lavrenty can earn.
Input
The first line contains 4 integers n, m, c0 and d0 (1 ≤ n ≤ 1000, 1 ≤ m ≤ 10, 1 ≤ c0, d0 ≤ 100). Each of the following m lines contains 4 integers. The i-th line contains numbers ai, bi, ci and di (1 ≤ ai, bi, ci, di ≤ 100).
Output
Print the only number — the maximum number of tugriks Lavrenty can earn.
Sample Input
Input
10 2 2 1
7 3 2 100
12 3 1 10
Output
241
Input
100 1 25 50
15 5 20 10
Output
200
Sample Output
Hint
//多重背包
初始化dp值为只用自身所得价值
第一重循环是可以组成包子个数
第二重是面团n...c多重背包
方程是dp[k]=max{dp[k-c]+d,dp[k]}
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[10000+10];
int main()
{
int n,m,c0,d0;
cin>>n>>m>>c0>>d0;
memset(dp,0,sizeof(dp));
for(int i=c0; i<=n; i++)
dp[i]=i/c0*d0; //初始化只用面做馒头的价值;
int a,b,c,d;
for(int i=0; i<m; i++)
{
cin>>a>>b>>c>>d;//a代表的是它拥有的面团个数,b代表的是馅料个数,c代表的是面团个数
for(int j=1; j<=a/b; j++) //使用i最多生成a/b个合成品
{
//第一层循环是合成品个数
for(int k=n; k>=c; k--) //第二重循环是从n...c
dp[k]=max(dp[k-c]+d,dp[k]); //包与不包两种情况;
}
}
cout<<dp[n]<<endl;
return 0;
}