JVM原理3

本文详细介绍了Java类加载的五个阶段:加载、验证、准备、解析和初始化,以及类加载器的工作原理,包括双亲委派模型及其例外情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 类加载的时机
     
  • 加载、验证、准备、初始化和卸载这5个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定(也称为动态绑定或晚期绑定)。注意,这里笔者写的是按部就班地开始,而不是按部就班地进行完成,强调这点是因为这些阶段通常都是互相交叉地混合式进行的,通常会在一个阶段执行的过程中调用、激活另外一个阶段。




  1. 初始化
  • 虚拟机规范严格规定了   有且只有  5种  情况必须立即对类进行初始化(而加载、验证、准备自然需要在此之前开始):
    1)遇到newgetstaticputstaticinvokestatic4条字节码指令时,如果类没有进行过初
    始化,则需要先触发其初始化。生成这4条指令的最常见的Java代码场景是:使用new关键字
    实例化对象的时候、读取或设置一个类的静态字段(被final修饰、已在编译期把结果放入常量池的静态字段除外)的时候,以及调用一个类的静态方法的时候。
    2)使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。
    3)当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
    4)当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类。
    5)当使用JDK 1.7的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStaticREF_putStaticREF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。




  1. 加载
  • 在加载阶段,虚拟机需要完成以下3件事情:
    1)通过一个类的全限定名来获取定义此类的二进制字节流。
    2)将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
    3)在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。
  • 非数组类的加载阶段(准确地说,是加载阶段中获取类的二进制字节流的动作)是开发人员可控性最强的,因为加载阶段既可以使用系统提供的引导类加载器来完成,也可以由用户自定义的类加载器去完成,开发人员可以通过定义自己的类加载器去控制字节流的获取方式(即重写一个类加载器的loadClass()方法)。
  • 数组类本身不通过类加载器创建,它是由Java虚拟机直接创建的。但数组类与类加载器仍然有很密切的关系,因为数组类的元素类型(Element Type,指的是数组去掉所有维度的类型)最终是要靠类加载器去创建,数组类(下面简称为C)创建过程就遵循以下规则:
    1. 如果数组的组件类型(Component Type,指的是数组去掉一个维度的类型)是引用类
    型,那就递归采用加载过程去加载这个组件类型,数组C将在加载该组件类型的类加载器的类名称空间上被标识(一个类必须与类加载器一起确定唯一性)。
    2. 如果数组的组件类型不是引用类型(例如int[]数组),Java虚拟机将会把数组C标记为与
    引导类加载器关联。
    3. 数组类的可见性与它的组件类型的可见性一致,如果组件类型不是引用类型,那数组类
    的可见性将默认为public
  • 加载阶段完成后,虚拟机外部的二进制字节流就按照虚拟机所需的格式存储在方法区之中,然后在内存中实例化一个java.lang.Class类的对象(并没有明确规定是在Java堆中,对HotSpot虚拟机而言,Class对象比较特殊,它虽然是对象,但是存放在方法区里面),这个对象将作为程序访问方法区中的这些类型数据的外部接口。
  • 加载阶段与连接阶段的部分内容(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始,但这些夹在加载阶段之中进行的动作,仍然属于连接阶段的内容,这两个阶段的开始时间仍然保持着固定的先后顺序。




  1. 验证
  • 验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
  • 验证阶段大致上会完成下面4个阶段的检验动作:
    (文件格式验证、元数据验证、字节码验证、符号引用验证)
    1.文件格式验证
    第一阶段要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。这一阶段可能包括下面这些验证点:
    1) 是否以魔数0xCAFEBABE开头。
    2) 主、次版本号是否在当前虚拟机处理范围之内。
    3) 常量池的常量中是否有不被支持的常量类型(检查常量tag标志)。
    4) 指向常量的各种索引值中是否有指向不存在的常量或不符合类型的常量。
    5) CONSTANT_Utf8_info型的常量中是否有不符合UTF8编码的数据。
    6) Class文件中各个部分及文件本身是否有被删除的或附加的其他信息。
    ……
    (保证输入的字节流能正确地解析并存储于方法区之内,格式上符合描述一个Java类型信息的要求。这阶段的验证是基于二进制字节流进行的,只有通过了这个阶段的验证后,字节流才会进入内存的方法区中进行存储,所以后面的3个验证阶段全部是基于方法区的存储结构进行的,不会再直接操作字节流。)
    2.元数据验证
    第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合Java语言规范的要求,这个阶段可能包括的验证点如下:
    1) 这个类是否有父类(除了java.lang.Object之外,所有的类都应当有父类)。
    2) 这个类的父类是否继承了不允许被继承的类(被final修饰的类)。
    3) 如果这个类不是抽象类,是否实现了其父类或接口之中要求实现的所有方法。
    4) 类中的字段、方法是否与父类产生矛盾(例如覆盖了父类的final字段,或者出现不符合规则的方法重载,例如方法参数都一致,但返回值类型却不同等)。
    ……
    (第二阶段的主要目的是对类的元数据信息进行语义校验,保证不存在不符合Java语言规范的元数据信息。)
    3.字节码验证
    第三阶段是整个验证过程中最复杂的一个阶段,主要目的是通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型做完校验后,这个阶段将对类的方法体进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的事件,例如:
    1) 保证任意时刻操作数栈的数据类型与指令代码序列都能配合工作,例如不会出现类似这样的情况:在操作栈放置了一个int类型的数据,使用时却按long类型来加载入本地变量表中。
    2) 保证跳转指令不会跳转到方法体以外的字节码指令上。
    3) 保证方法体中的类型转换是有效的,例如可以把一个子类对象赋值给父类数据类型,这是安全的,但是把父类对象赋值给子类数据类型,甚至把对象赋值给与它毫无继承关系、完全不相干的一个数据类型,则是危险和不合法的。
    ……
    4.符号引用验证
    最后一个阶段的校验发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三阶段——解析阶段中发生。符号引用验证可以看做是对类自身以外(常量池中的各种符号引用)的信息进行匹配性校验,通常需要校验下列内容:
    1) 符号引用中通过字符串描述的全限定名是否能找到对应的类。
    2) 在指定类中是否存在符合方法的字段描述符以及简单名称所描述的方法和字段。
    3) 符号引用中的类、字段、方法的访问性(privateprotectedpublicdefault)是否可被当前类访问。
    ……
    (符号引用验证的目的是确保解析动作能正常执行,如果无法通过符号引用验证,那么将会抛出一个java.lang.IncompatibleClassChangeError异常的子类,如java.lang.IllegalAccessErrorjava.lang.NoSuchFieldErrorjava.lang.NoSuchMethodError等。)
  • 对于虚拟机的类加载机制来说,验证阶段是一个非常重要的、但不是一定必要(因为对程序运行期没有影响)的阶段。如果所运行的全部代码(包括自己编写的及第三方包中的代码)都已经被反复使用和验证过,那么在实施阶段就可以考虑使用-Xverifynone参数来关闭大部分的类验证措施,以缩短虚拟机类加载的时间。




  1. 准备
  • 准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中进行分配。
  • 时候进行内存分配的仅包括类变量(被static修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。
  • 这里所说的初始值通常情况下是数据类型的零值。
  • 如果类字段的字段属性表中存在ConstantValue属性,那在准备阶段变量value就会被初始化为ConstantValue属性所指定的值。




  1. 解析
  • 解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。
  • 符号引用Class文件中它以CONSTANT_Class_infoCONSTANT_Fieldref_infoCONSTANT_Methodref_info等类型的常量出现。
  • 符号引用(Symbolic References):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定已经加载到内存中。各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须都是一致的,因为符号引用的字面量形式明确定义Java虚拟机规范的Class文件格式中。
  • 直接引用(Direct References):直接引用可以是直接指向目标的指针、相对偏移量或是一个能间接定位到目标的句柄。直接引用是和虚拟机实现的内存布局相关的,同一个符号引用在不同虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经在内存中存在。
  • 对同一个符号引用进行多次解析请求是很常见的事情,除invokedynamic指令以外,虚拟机实现可以对第一次解析的结果进行缓存(在运行时常量池中记录直接引用,并把常量标识为已解析状态)从而避免解析动作重复进行。无论是否真正执行了多次解析动作,虚拟机需要保证的是在同一个实体中,如果一个符号引用之前已经被成功解析过,那么后续的引用解析请求就应当一直成功;同样的,如果第一次解析失败了,那么其他指令对这个符号的解析请求也应该收到相同的异常。
  • 对于invokedynamic指令,上面规则则不成立。当碰到某个前面已经由invokedynamic指令
    触发过解析的符号引用时,并不意味着这个解析结果对于其他invokedynamic指令也同样生
    效。因为invokedynamic指令的目的本来就是用于动态语言支持(目前仅使用Java语言不会生成这条字节码指令),它所对应的引用称为动态调用点限定符Dynamic Call Site
    Specifier),这里动态的含义就是必须等到程序实际运行到这条指令的时候,解析动作才能进行。相对的,其余可触发解析的指令都是静态的,可以在刚刚完成加载阶段,还没有开始执行代码时就进行解析。
  • 解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符7类符号引用进行,分别对应于常量池的CONSTANT_Class_infoCONSTANT_Fieldref_infoCONSTANT_Methodref_info
    CONSTANT_InterfaceMethodref_infoCONSTANT_MethodType_infoCONSTANT_MethodHandle_infoCONSTANT_InvokeDynamic_info 7种常量类型。
    1.类或接口的解析
    假设当前代码所处的类为D,如果要把一个从未解析过的符号引用N解析为一个类或接C的直接引用,那虚拟机完成整个解析的过程需要以下3个步骤:
    1)如果C不是一个数组类型,那虚拟机将会把代表N的全限定名传递给D的类加载器去加载这个类C。在加载过程中,由于元数据验证、字节码验证的需要,又可能触发其他相关类的加载动作,例如加载这个类的父类或实现的接口。一旦这个加载过程出现了任何异常,解析过程就宣告失败。
    2)如果C是一个数组类型,并且数组的元素类型为对象,也就是N的描述符会是类“[Ljava/lang/Integer”的形式,那将会按照第1点的规则加载数组元素类型。如果N的描述符如前面所假设的形式,需要加载的元素类型就是“java.lang.Integer”,接着由虚拟机生成一个代表此数组维度和元素的数组对象。
    3)如果上面的步骤没有出现任何异常,那么C在虚拟机中实际上已经成为一个有效的类或接口了,但在解析完成之前还要进行符号引用验证,确认D是否具备对C的访问权限。如果发现不具备访问权限,将抛出java.lang.IllegalAccessError异常。
    2.字段解析
    要解析一个未被解析过的字段符号引用,首先将会对字段表内class_index项中索引的CONSTANT_Class_info符号引用进行解析,也就是字段所属的类或接口的符号引用。如果在解析这个类或接口符号引用的过程中出现了任何异常,都会导致字段符号引用解析的失败。
    如果解析成功完成,那将这个字段所属的类或接口用C表示,虚拟机规范要求按照如下步骤C进行后续字段的搜索。
    1)如果C本身就包含了简单名称和字段描述符都与目标相匹配的字段,则返回这个字段的直接引用,查找结束。
    2)否则,如果在C中实现了接口,将会按照继承关系从下往上递归搜索各个接口和它的父接口,如果接口中包含了简单名称和字段描述符都与目标相匹配的字段,则返回这个字段的直接引用,查找结束。
    3)否则,如果C不是java.lang.Object的话,将会按照继承关系从下往上递归搜索其父类,如果在父类中包含了简单名称和字段描述符都与目标相匹配的字段,则返回这个字段的直接引用,查找结束。
    4)否则,查找失败,抛出java.lang.NoSuchFieldError异常。如果查找过程成功返回了引用,将会对这个字段进行权限验证,如果发现不具备对字段的访问权限,将抛出java.lang.IllegalAccessError异常。
    3.类方法解析
    类方法解析的第一个步骤与字段解析一样,也需要先解析出类方法表的class_index项中索引的方法所属的类或接口的符号引用,如果解析成功,我们依然用C表示这个类,接下来虚拟机将会按照如下步骤进行后续的类方法搜索。
    1)类方法和接口方法符号引用的常量类型定义是分开的,如果在类方法表中发现class_index中索引的C是个接口,那就直接出java.lang.IncompatibleClassChangeError异常。
    2)如果通过了第1步,在类C中查找是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束。
    3)否则,在类C的父类中递归查找是否有简单名称和描述符都与目标相匹配的方法,如
    果有则返回这个方法的直接引用,查找结束。
    4)否则,在类C实现的接口列表及它们的父接口之中递归查找是否有简单名称和描述符都与目标相匹配的方法,如果存在匹配的方法,说明类C是一个抽象类,这时查找结束,抛java.lang.AbstractMethodError异常。
    5)否则,宣告方法查找失败,抛出java.lang.NoSuchMethodError
    最后,如果查找过程成功返回了直接引用,将会对这个方法进行权限验证,如果发现不
    具备对此方法的访问权限,将抛出java.lang.IllegalAccessError异常。
    4.接口方法解析
    接口方法也需要先解析出接口方法表的class_index[4]项中索引的方法所属的类或接口的符号引用,如果解析成功,依然用C表示这个接口,接下来虚拟机将会按照如下步骤进行后续的接口方法搜索。
    1)与类方法解析不同,如果在接口方法表中发现class_index中的索引C是个类而不是接口,那就直接抛出java.lang.IncompatibleClassChangeError异常。
    2)否则,在接口C中查找是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束。
    3)否则,在接口C的父接口中递归查找,直到java.lang.Object类(查找范围会包括Object类)为止,看是否有简单名称和描述符都与目标相匹配的方法,如果有则返回这个方法的直接引用,查找结束。
    4)否则,宣告方法查找失败,抛出java.lang.NoSuchMethodError异常。
    由于接口中的所有方法默认都是public的,所以不存在访问权限的问题,因此接口方法的符号解析应当不会抛出java.lang.IllegalAccessError异常。




  1. 初始化
  • 初始化阶段是执行类构造器<clinit>()方法的过程。
  • clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块static{}块)中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序所决定的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前
    面的静态语句块可以赋值,但是不能访问。
  • clinit>()方法与类的构造函数(或者说实例构造器<init>()方法)不同,它不需要显式地调用父类构造器,虚拟机会保证在子类的<clinit>()方法执行之前,父类的<clinit>()方法已经执行完毕。因此在虚拟机中第一个被执行的<clinit>()方法的类肯定是 java.lang.Object由于父类的<clinit>()方法先执行,也就意味着父类中定义的静态语句块要优先于子类的变量赋值操作。
  • clinit>()方法对于类或接口来说并不是必需的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生成<clinit>()方法。
  • 接口中不能使用静态语句块,但仍然有变量初始化的赋值操作,因此接口与类一样都会生成<clinit>()方法。但接口与类不同的是,执行接口的<clinit>()方法不需要先执行父接口的<clinit>()方法。只有当父接口中定义的变量使用时,父接口才会初始化。另外,接口的实现类在初始化时也一样不会执行接口的<clinit>()方法。




  1. 类与类加载器
  • 对于任意一个类,都需要由加载它的类加载器和这个类本身一同确立其在Java拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。
  • 比较两个类是否相等,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个Class文件,被同一个虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。
  • 这里所指的相等,包括代表类的Class对象的equals()方法、isAssignableFrom()方
    法、isInstance()方法的返回结果,也包括使用instanceof关键字做对象所属关系判定等情
    况。





  1. 双亲委派模型
  • Java虚拟机的角度来讲,只存在两种不同的类加载器:一种是启动类加载器Bootstrap ClassLoader),这个类加载器使用C++语言实现[1],是虚拟机自身的一部分;另一种就是所有其他的类加载器,这些类加载器都由Java语言实现,独立于虚拟机外部,并且全都继承自抽象类java.lang.ClassLoader
  • 启动类加载器(Bootstrap ClassLoader):这个类将器负责将存放在<JAVA_HOME\lib 目录中的,或者被-Xbootclasspath参数所指定的路径中的,并且是虚拟机识别的(仅按照文件名识别,如rt.jar,名字不符合的类库即使放在lib目录中也不会被加载)类库加载到虚拟机内存中。启动类加载器无法被Java程序直接引用,用户在编写自定义类加载器时,如果需要把加载请求委派给引导类加载器,那直接使用null代替即可
  • 扩展类加载器(Extension ClassLoader):这个加载器由 sun.misc.Launcher$ExtClassLoader 实现,它负责加载 <JAVA_HOME\lib\ext 目录中的,或者被 java.ext.dirs 统变量所指定的路径中的所有类库,开发者可以直接使用扩展类加载器。
  • 应用程序类加载器(Application ClassLoader):这个类加载器由 sun.misc.Launcher $App-ClassLoader 实现。由于这个类加载器是ClassLoadergetSystemClassLoader()方法的返回值,所以一般也称它为系统类加载器。它负责加载用户类路径(ClassPath)上所指定的类库,开发者可以直接使用这个类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。
     
  • 双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器。这里类加载器之间的父子关系一般不会以继承(Inheritance)的关系来实现,而是都使用组合(Composition)关系来复用父加载器的代码。
  • 工作过程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子加载器才会尝试自己去加载。





  1. 破坏双亲委派模型
  • 基础类之所以称为基础,是因为它们总是作为被用户代码调用的API,但世事往往没有绝对的完美,如果基础类又要调用回用户的代码,那该怎么办?
    这并非是不可能的事情,一个典型的例子便是JNDI服务,JNDI现在已经是Java的标准服
    务,它的代码由启动类加载器去加载(在JDK 1.3时放进去的rt.jar),但JNDI的目的就是对
    资源进行集中管理和查找,它需要调用由独立厂商实现并部署在应用程序的ClassPath下的
    JNDI接口提供者(SPI,Service Provider Interface)的代码,但启动类加载器不可能认识这些代码啊!那该怎么办?
    为了解决这个问题,Java设计团队只好引入了一个不太优雅的设计:线程上下文类加载
    器(Thread Context ClassLoader)。这个类加载器可以通过java.lang.Thread类的
    setContextClassLoaser()方法进行设置,如果创建线程时还未设置,它将会从父线程中继承一个,如果在应用程序的全局范围内都没有设置过的话,那这个类加载器默认就是应用程序
    类加载器。
    有了线程上下文类加载器,就可以做一些舞弊的事情了,JNDI服务使用这个线程上下
    文类加载器去加载所需要的SPI代码,也就是父类加载器请求子类加载器去完成类加载的动
    作,这种行为实际上就是打通了双亲委派模型的层次结构来逆向使用类加载器,实际上已经
    违背了双亲委派模型的一般性原则,但这也是无可奈何的事情。Java中所有涉及SPI的加载动
    作基本上都采用这种方式,例如JNDIJDBCJCEJAXBJBI等。
  • OSGi环境下,类加载器不再是双亲委派模型中的树状结构,而是进一步发展为更加复杂的网状结构,当收到类加载请求时,OSGi将按照下面的顺序进行类搜索:
    1)将以java.*开头的类委派给父类加载器加载。
    2)否则,将委派列表名单内的类委派给父类加载器加载。
    3)否则,将Import列表中的类委派给Export这个类的Bundle的类加载器加载。
    4)否则,查找当前BundleClassPath,使用自己的类加载器加载。
    5)否则,查找类是否在自己的Fragment Bundle中,如果在,则委派给Fragment Bundle
    类加载器加载。
    6)否则,查找Dynamic Import列表的Bundle,委派给对应Bundle的类加载器加载。
    7)否则,类查找失败。
    上面的查找顺序中只有开头两点仍然符合双亲委派规则,其余的类查找都是在平级的类加载器中进行的。






















































































































































































































































评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值