[置顶] Hadoop HDFS文件存储特点结构

本文详细介绍了HDFS的特点及其适用场景,并探讨了HDFS的设计原则、系统结构及Block的副本放置策略等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1:什么是HDFS?

HDFS适合做:
1.存储大文件。上G、T甚至P。
2.一次写入,多次读取。并且每次作业都要读取大部分的数据。
3.搭建在普通商业机群上就可以了。虽然会经常宕机,但HDFS有良好的容错机制。

HDFS不适合做:
1.实时数据获取。如果有这个需求可以用HBase。
2.很多小文件。因为namenode要存储HDFS的metadata( 比如目录的树状结构,每个文件的文件名、ACL(权限管理)、长度、owner、文件内容存放的位置等等信息),所以HDFS上文件的数目受到namenode内存的限制。

3.并发环境下的写入和修改。
hadoop中存储文件以HDFS形式存储,HDFS拥有自己的设计原则:

1:文件大小以block块的形式存储
2:每个块至少分配到三台DataNode(看集群情况而定)
3:通过副本机制提高可靠度和吞吐量
4:hadoop1.0使用单一的master(NameNode)来协调存储元数据(metadata)
5:最有意思的是hadoop设计者没有设置客户端缓存机制,因为我们对处理数据有足够的信心。

下图为HDFS的系统结构



NameNode:主要存储元数据:例如:文件名,拷贝几份,分别备份到哪里;

过程大概如下:
client要向集群中写入数据,首先询问Master(NameNode),Master告知客户端向哪些DataNode写入数据,在往DataNode写入数据的同时,DataNode与NameNode保持心跳,如果DataNode在执行任务失败,NameNode会通过心跳机制得知DataNode死掉,将重新分配新的任务到其他的DataNode。

2:Block之副本放置策略
第一副本:放置在上传文件DataNode,如果是集群外提交,由NameNode选择一台磁盘不太满,CPU不太忙的节点。
第二副本:放置在于第一副本不同的机架的节点上
第三副本:与第二个副本相同集群的节点
也许根据业务的需要我们需要更多地副本,其他副本随机分配
  
3:Block的存储形式
1:Block默认大小64M,如果上传文件小于64M,那么仍然占用一个命名空间(NameNode metadata),
但是物理存储不会占用64M空间; (这也是hadoop为什么不太适合处理小数据的原因之一)

2: Block大小和副本数由Client端上传文件到HDFS时设置,其中副本数可以变更,Block是不可以再上传后变更的。

转自: http://www.cnblogs.com/zhanghuijunjava/archive/2013/04/22/hadoop-block_hdfs.html

  • 大小: 89.8 KB
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值