VJ题目链接:https://vjudge.net/problem/LightOJ-1282
题目大意
给你两个数
(
n
,
k
)
(n,k)
(n,k),
(
2
≤
n
≤
2
31
)
\left( 2\leq n\leq 2^{31}\right)
(2≤n≤231),
(
1
≤
k
≤
1
0
7
)
\left( 1\leq k\leq 10^{7}\right)
(1≤k≤107)
让你求
n
k
n^{k}
nk的前三位数和后三位数
思路
n
k
n^{k}
nk的后三位数很好求,直接快速幂然后对1000取模即可,
它的前三位数就要算一下
首先用科学计数法表示数,如
123465789
=
1.23456789
⋅
1
0
8
123465789=1.23456789\cdot 10^{8}
123465789=1.23456789⋅108
那么
n
k
=
x
⋅
1
0
l
e
n
−
1
n^{k}=x\cdot 10^{len-1}
nk=x⋅10len−1,其中
l
e
n
len
len是
n
k
n^{k}
nk的位数,即
l
e
n
=
lg
(
n
k
)
len=\lg \left( n^{k}\right)
len=lg(nk)
∴
l
e
n
=
k
⋅
lg
(
n
)
\therefore len=k\cdot \lg \left( n\right)
∴len=k⋅lg(n)
对这个式子
n
k
=
x
⋅
1
0
l
e
n
−
1
n^{k}=x\cdot 10^{len-1}
nk=x⋅10len−1两边取对数得到
k
⋅
lg
(
n
)
=
lg
(
x
)
+
(
l
e
n
+
1
)
k\cdot \lg \left( n\right)=\lg \left(x\right)+\left( len+1\right)
k⋅lg(n)=lg(x)+(len+1)
这样就可以解出x
n
k
n^{k}
nk的前三位就是x的前三位
AC代码
#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long ll;
#define wfor(i,j,k) for(i=j;i<k;++i)
#define mfor(i,j,k) for(i=j;i>=k;--i)
// void read(int &x) {
// char ch = getchar(); x = 0;
// for (; ch < '0' || ch > '9'; ch = getchar());
// for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
// }
ll ksm(ll a, ll b, ll mod)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
}
int main()
{
//std::ios::sync_with_stdio(false);
#ifdef test
freopen("F:\\Desktop\\question\\in.txt", "r", stdin);
#endif
#ifdef ubuntu
freopen("/home/time/debug/debug/in", "r", stdin);
freopen("/home/time/debug/debug/out", "w", stdout);
#endif
int t;
scanf("%d", &t);
int casecnt = 0;
while (t--)
{
casecnt++;
int n, k;
scanf("%d %d", &n, &k);
int anslast = ksm(n, k, 1000);
int len = k * log10(n * 1.0);
double x = pow(10, k * log10(n * 1.0) - len + 1);
while (x < 100)
x *= 10;
int ans = floor(x);
printf("Case %d: %03d %03d\n", casecnt, ans, anslast);
}
return 0;
}