faster rcnn 代码解析 11

lib/num 非极大值抑制

py_cpu_nums.py

# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

import numpy as np

def py_cpu_nms(dets, thresh):
    """Pure Python NMS baseline."""
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        # every time the first is the biggst, and add it directly
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]# because index start from 1

    return keep

cpu_nms.pyx

# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

import numpy as np
cimport numpy as np
#cimport 是 Cython 中用来引入 .pxd 文件的命令。
# 有关 .pxd 文件,可以简单理解成 C/C++ 中用来写声明的头文件
'''
使用cdef关键字,用来定义C变量以及各种结构体,枚举类型变量.
注意:cdef只是用来定义类型,并不能用来作为引用对象。
'''
cdef inline np.float32_t max(np.float32_t a, np.float32_t b):#取a,b之间最大值
    return a if a >= b else b

cdef inline np.float32_t min(np.float32_t a, np.float32_t b):#取a,b之间最小值
    return a if a <= b else b

def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
    #np.ndarray[np.float32_t, ndim=2] 就是一个类型名就像 int 一样,只是它比较长
    # 而且信息量比较大而已。它的意思是,这是个类型为 np.float32_t 的2维 np.ndarray

    #依次取出左上角和右下角坐标以及分类器得分(置信度)
    cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]#X1是一维的
    cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
    cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
    cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
    cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]

    cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]#将scores降序排列,并得到索引
    #where the [::-1] is used to sort the column from high to low, instead of low
    #  to high

    cdef int ndets = dets.shape[0]#读取第一维(行)的长度
    cdef np.ndarray[np.int_t, ndim=1] suppressed = \
            np.zeros((ndets), dtype=np.int)

    # nominal indices
    cdef int _i, _j
    # sorted indices
    cdef int i, j
    # temp variables临时变量 for box i's (the box currently under consideration)
    cdef np.float32_t ix1, iy1, ix2, iy2, iarea
    # variables for computing overlap with box j (lower scoring box)
    cdef np.float32_t xx1, yy1, xx2, yy2
    cdef np.float32_t w, h
    cdef np.float32_t inter, ovr

    keep = []
    for _i in range(ndets):
        i = order[_i]#获得排序后的索引
        if suppressed[i] == 1:
            continue
        keep.append(i)
        ix1 = x1[i]
        iy1 = y1[i]
        ix2 = x2[i]
        iy2 = y2[i]
        iarea = areas[i]
        for _j in range(_i + 1, ndets):#_j是除了当前_i之外其他的框
            j = order[_j]
            if suppressed[j] == 1:
                continue
            #计算相交面积
            xx1 = max(ix1, x1[j])## calculate the points of overlap
            yy1 = max(iy1, y1[j])
            xx2 = min(ix2, x2[j])
            yy2 = min(iy2, y2[j])
            w = max(0.0, xx2 - xx1 + 1)## the weights of overlap
            h = max(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (iarea + areas[j] - inter)
            if ovr >= thresh:#舍弃重叠率大于阈值的框
                suppressed[j] = 1

    return keep

gpu_nms.pyx

# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

import numpy as np
cimport numpy as np

assert sizeof(int) == sizeof(np.int32_t)
'''
文件nms_gpu.hpp:
void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
          int boxes_dim, float nms_overlap_thresh, int device_id);
'''
cdef extern from "gpu_nms.hpp":
    void _nms(np.int32_t*, int*, np.float32_t*, int, int, float, int)

def gpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh,
            np.int32_t device_id=0):
    cdef int boxes_num = dets.shape[0]
    cdef int boxes_dim = dets.shape[1]
    cdef int num_out
    cdef np.ndarray[np.int32_t, ndim=1] \
        keep = np.zeros(boxes_num, dtype=np.int32)
    cdef np.ndarray[np.float32_t, ndim=1] \
        scores = dets[:, 4]
    cdef np.ndarray[np.int_t, ndim=1] \
        order = scores.argsort()[::-1]
    cdef np.ndarray[np.float32_t, ndim=2] \
        sorted_dets = dets[order, :]#dets 2*5
    _nms(&keep[0], &num_out, &sorted_dets[0, 0], boxes_num, boxes_dim, thresh, device_id)
    keep = keep[:num_out]
    return list(order[keep])

gpu_nums.hpp

void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
          int boxes_dim, float nms_overlap_thresh, int device_id);

nms_wrapper.py

# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

from fast_rcnn.config import cfg
from nms.gpu_nms import gpu_nms
from nms.cpu_nms import cpu_nms

def nms(dets, thresh, force_cpu=False):
    """Dispatch to either CPU or GPU NMS implementations."""

    if dets.shape[0] == 0:
        return []
    if cfg.USE_GPU_NMS and not force_cpu:
        return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
    else:
        return cpu_nms(dets, thresh)

nms_kernel.cu 未完

参考:
https://blog.youkuaiyun.com/l_ml_m_lm_m/article/details/79881437
https://blog.youkuaiyun.com/l_ml_m_lm_m/article/details/81813141

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值