lib/datasets/voc_eval.py
该函数返回准确率、召回率和AP(average precision)
# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------
import xml.etree.ElementTree as ET
import os
import cPickle#序列化存储模块
import numpy as np
def parse_rec(filename):#解析读取XML函数
""" Parse a PASCAL VOC xml file """
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text#。text返回name标签中内容例如ant
obj_struct['pose'] = obj.find('pose').text#unspecified
obj_struct['truncated'] = int(obj.find('truncated').text)# int(0)
obj_struct['difficult'] = int(obj.find('difficult').text)#int(0)
bbox = obj.find('bndbox')#bndbox中包括{ xmin ymin xmax ymax}
obj_struct['bbox'] = [int(bbox.find('xmin').text),
int(bbox.find('ymin').text),
int(bbox.find('xmax').text),
int(bbox.find('ymax').text)]
objects.append(obj_struct)#append() 方法用于在列表末尾添加新的对象。将{ xmin ymin xmax ymax}逐个添加到列表中
return objects
def voc_ap(rec, prec, use_07_metric=False):
""" ap = voc_ap(rec, prec, [use_07_metric度量的,十进制])
Compute VOC AP given precision准确率(prec) and recall召回率(rec).
If use_07_metric is true, uses the
VOC 07 11 point method (default:False).
"""
'''
AP:average precision 一个评价指标(evaluation measure).在VOC07计算ap时,取rec上的11个位置[0:0.1:0.1:1],然后得到近似的ap;12之后取所有rec上的不同坐标值,计算ap,由于两个precision对于recall是分段线性的,故可以得到精确的ap值
'''
if use_07_metric:#默认为false
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):#采样计算,取11个点
#t=0.,0.1,0.2,...,1.0隔0.1取一值,最后的1.1取不到
if np.sum(rec >= t) == 0:#若为空,准确率则设置为0
p = 0
else:
p = np.max(prec[rec >= t])#计算准确率的最大值
ap = ap + p / 11.
else:
# correct AP calculation估算、计算
# first append sentinel values(标记值,标志值) at the end
mrec = np.concatenate(([0.], rec, [1.]))#拼接,默认axis=0,按行拼接[[0.],[rec],[1.0]]
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):#i =mpre.size-1,mpre.size -2,...,2,1
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])#找到prec和0中的最大值
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]#找到rec的突变点,确定这些点的坐标
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])#area= sum((x2-x1)*y)
return ap
def voc_eval(detpath, #主函数
annopath,
imagesetfile,
classname,
cachedir,
ovthresh=0.5,
use_07_metric=False):
"""rec, prec, ap = voc_eval(detpath,
annopath,
imagesetfile,
classname,
[ovthresh],
[use_07_metric])
Top level function that does the PASCAL VOC evaluation.
detpath: Path to detections产生的txt文件,里面是一张图片的各个detection。
detpath.format(classname) should produce the detection results file.
annopath: Path to annotationsxml 文件与对应的图像相呼应。
annopath.format(imagename) should be the xml annotations file.
imagesetfile: Text file containing the list of images, one image per line.
一个txt文件,里面是每个图片的地址,每行一个地址。
classname: Category name (duh) 种类的名字,即类别。
cachedir: Directory for caching the annotations 缓存标注的目录。
[ovthresh]: Overlap threshold (default = 0.5) 重叠的多少大小。
[use_07_metric]: Whether to use VOC07's 11 point AP computation
(default False) 是否使用VOC07的11点AP计算。
"""
# assumes detections are in detpath.format(classname)
# assumes annotations are in annopath.format(imagename)
# assumes imagesetfile is a text file with each line an image name
# cachedir caches the annotations in a pickle file
# first load gt
if not os.path.isdir(cachedir):#判断cachedir是否存在,如不存在,创建cachedir
os.mkdir(cachedir)
cachefile = os.path.join(cachedir, 'annots.pkl')#添加文件annots.pkl
# read list of images
with open(imagesetfile, 'r') as f:
lines = f.readlines()
imagenames = [x.strip() for x in lines]#获取每一个图片的地址 ima = [...,'3152','3329',...]
if not os.path.isfile(cachefile):
# load annots
recs = {}#字典
for i, imagename in enumerate(imagenames):
recs[imagename] = parse_rec(annopath.format(imagename))#赋值 例如{‘0085’:[xmin,ymin,xmax,ymax]}
if i % 100 == 0:#每个一百,输出一次
print 'Reading annotation for {:d}/{:d}'.format(
i + 1, len(imagenames))
# save
print 'Saving cached annotations to {:s}'.format(cachefile)
with open(cachefile, 'w') as f:
cPickle.dump(recs, f)#将recs字典存储到annots.pkl文件中
else:
# load
with open(cachefile, 'r') as f:
recs = cPickle.load(f)#从annots.pkl中读取recs字典
# extract gt objects for this class 对每张图片的xml获取函数指定类的bbox等。
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj['name'] == classname]#获取每个文件中某种类别的物体
bbox = np.array([x['bbox'] for x in R])#抽取bbox
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)#difficult基本都是0,并将其转为bool型
det = [False] * len(R)#list中形参len(R)个false
npos = npos + sum(~difficult)#自增,sum求得的值基本都是0
class_recs[imagename] = {'bbox': bbox,
'difficult': difficult,
'det': det}#{[imagename] :{'bbox': bbox, 'difficult': difficult,'det': det}}
# read dets
detfile = detpath.format(classname)
with open(detfile, 'r') as f:
lines = f.readlines()
if any(lines) == 1:#判断lines是否全为空,如不都为空,返回true
splitlines = [x.strip().split(' ') for x in lines]#删除空格,并分割 spl=[...,['3152'],['1600'],...]
image_ids = [x[0] for x in splitlines]#图片的index
confidence = np.array([float(x[1]) for x in splitlines])#类别置信度
BB = np.array([[float(z) for z in x[2:]] for x in splitlines])#变为浮点型的bbox
# sort by confidence
sorted_ind = np.argsort(-confidence)#返回confidence从大到小的索引值
sorted_scores = np.sort(-confidence)#将confidence降序排列
BB = BB[sorted_ind, :]#重排bbox,由大概率到小概率
image_ids = [image_ids[x] for x in sorted_ind]#对图片进行重排
# go down dets and mark TPs(true positive) and FPs(false positive)
nd = len(image_ids)#获取图像数量
tp = np.zeros(nd)#ndx1的零矩阵
fp = np.zeros(nd)
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
# union
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
overlaps = inters / uni
ovmax = np.max(overlaps)#返回最大重叠率
jmax = np.argmax(overlaps)#返回最大重合率的索引值
if ovmax > ovthresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]:
tp[d] = 1. #正样本
R['det'][jmax] = 1
else:
fp[d] = 1. #负样本
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)#返回沿给定列的累积和
tp = np.cumsum(tp)
rec = tp / float(npos)#Recall=TP/(TP+FN)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)#Precision=TP/(TP+FP),
ap = voc_ap(rec, prec, use_07_metric)
else:
rec = -1
prec = -1
ap = -1
return rec, prec, ap
本文介绍了一个基于PASCAL VOC数据集的评估函数,该函数能够计算目标检测任务中的准确率、召回率及平均精度(AP)。文章详细解释了如何解析XML文件获取真实框信息,并通过与检测结果对比来计算各项评估指标。
583

被折叠的 条评论
为什么被折叠?



