| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 43742 | Accepted: 16061 |
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back Tseconds.
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
上代码
Bellman_Ford
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f
int top,n;
int dist[1000];
struct node
{
int u,v,w;
}q[6000];
int bellman()
{
int i,j;
for(i=1;i<=n;i++)
{
dist[i]=inf;
}
dist[1]=0;
for(i=1;i<n;i++)
{
for(j=0;j<top;j++)
{
int u=q[j].u;
int v=q[j].v;
if( dist[v]>dist[u]+q[j].w)
{
dist[v]=dist[u]+q[j].w;
}
}
}
for(i=0;i<top;i++)
{
int u=q[i].u;
int v=q[i].v;
if( dist[v]>dist[u]+q[i].w)
{
return 0;
}
}
return 1;
}
int main()
{
int m,i,j,l,k;
int t;
int a,b,c;
cin>>t;
while(t--)
{
top=0;
cin>>n>>m>>l;
while(m--)
{
cin>>a>>b>>c;
q[top].u=a;
q[top].v=b;
q[top++].w=c;
q[top].u=b;
q[top].v=a;
q[top++].w=c;
}
while(l--)
{
cin>>a>>b>>c;
q[top].u=a;
q[top].v=b;
q[top++].w=-c;
}
if(!bellman())
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
return 0;
}SPFA
#include <queue>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
#define inf 1<<26
struct node
{
int v,w;
int next;
}q[6000];
int head[6000],dist[6000],vis[6000],c[6000];
int top,n;
void chu()
{
int i;
top=0;
for(i=0;i<=n;i++)
{
head[i]=-1;
vis[i]=0;
c[i]=0;
}
}
void add(int u,int v,int w)
{
q[top].v=v;
q[top].w=w;
q[top].next=head[u];
head[u]=top++;
}
void spfa()
{
int i,j;
for(i=1;i<=n;i++)
{
dist[i]=inf;
}
vis[1]=1;
dist[1]=0;
c[1]++;
queue<int >Q;
Q.push(1);
while(!Q.empty())
{
int x=Q.front();
vis[x]=0;
Q.pop();
for(i=head[x];i!=-1;i=q[i].next)
{
int v=q[i].v;
int w=q[i].w;
if(dist[v]>dist[x]+w)
{
dist[v]=dist[x]+w;
if(!vis[v])
{
vis[v]=1;
c[v]++;
if(c[v]>=n)
{
cout<<"YES\n";
return ;
}
Q.push(v);
}
}
}
}
cout<<"NO\n";
}
int main()
{
int t,m,i,j,l;
cin>>t;
int a,b,c;
while(t--)
{
cin>>n>>m>>l;
chu();
while(m--)
{
cin>>a>>b>>c;
add(a,b,c);
add(b,a,c);
}
while(l--)
{
cin>>a>>b>>c;
add(a,b,-c);
}
spfa();
}
return 0;
}

本文介绍了一种通过路径和虫洞实现时间旅行的算法,利用Bellman-Ford和SPFA算法来判断是否能回到起点的时间点之前。适用于解决有关负权边和负权回路的问题。
2477

被折叠的 条评论
为什么被折叠?



