Leetcode63. Unique Paths II

本文探讨了在一个m*n网格中,机器人从左上角到右下角的路径规划问题,考虑了障碍物的影响。使用动态规划算法,通过计算每个格子到达目标的路径数,最终得出所有可能路径的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A robot is located at the top-left corner of a m x n grid (marked
‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The
robot is trying to reach the bottom-right corner of the grid (marked
‘Finish’ in the diagram below).

Now consider if some obstacles are added to the grids. How many unique
paths would there be?

在这里插入图片描述 An
obstacle and empty space is marked as 1 and 0 respectively in the
grid.

Note: m and n will be at most 100.

Example 1:

Input: [ [0,0,0], [0,1,0], [0,0,0] ] Output: 2 Explanation:
There is one obstacle in the middle of the 3x3 grid above. There are
two ways to reach the bottom-right corner:

  1. Right -> Right -> Down -> Down
  2. Down -> Down -> Right -> Right

动态规划0ms

//3 temp
class Solution {
public:
	int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
		int m = obstacleGrid.size(), n = obstacleGrid[0].size();
		vector<vector<long>> dp(m, vector<long>(n, 0));
		for (int j = 0; j < n; j++) {
			if (obstacleGrid[0][j] == 1) {
				break;
			}
			dp[0][j] = 1;
		}
		for (int i = 0; i < m; i++){
			if ( obstacleGrid[i][0] == 1) {
				break;
			}
			dp[i][0] = 1;
		}
		for (int i = 1; i < m; i++) {
			for (int j = 1; j < n; j++) {
				if (obstacleGrid[i][j] == 0) {
					dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
				}
			}
		}
		return dp[m - 1][n - 1];
	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值