as x[i1], x[i2],...,x[ik], which satisfies follow conditions:
1) x[i1] < x[i2],...,<x[ik];
2) 1<=i1 < i2,...,<ik<=n
As an excellent program designer, you must know how to find the maximum length of the
increasing sequense, which is defined as s. Now, the next question is how many increasing
subsequence with s-length can you find out from the sequence X.
For example, in one case, if s = 3, and you can find out 2 such subsequence A and B from X.
1) A = a1, a2, a3. B = b1, b2, b3.
2) Each ai or bj(i,j = 1,2,3) can only be chose once at most.
Now, the question is:
1) Find the maximum length of increasing subsequence of X(i.e. s).
2) Find the number of increasing subsequence with s-length under conditions described (i.e. num).
have n numbers.
4 3 6 2 5
2 2
//
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1410;
const int M=50000;
const int inf=(1<<28);
int head[N];
struct Edge
{
int v,next,w;
int pw;//原图中u->v的边权
} edge[M];
int cnt,n,s,t;//n从0开始 0->n-1
void addedge(int u,int v,int w)
{
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].pw=w;
edge[cnt].next=head[u];
head[u]=cnt++;
edge[cnt].v=u;
edge[cnt].w=0;
edge[cnt].pw=w;
edge[cnt].next=head[v];
head[v]=cnt++;
}
int sap()
{
int pre[N],cur[N],dis[N],gap[N];
int flow=0,aug=inf,u;
bool flag;
for(int i=0; i<n; i++)
{
cur[i]=head[i];
gap[i]=dis[i]=0;
}
gap[s]=n;
u=pre[s]=s;
while(dis[s]<n)
{
flag=0;
for(int &j=cur[u]; j!=-1; j=edge[j].next)
{
int v=edge[j].v;
if(edge[j].w>0&&dis[u]==dis[v]+1)
{
flag=1;
if(edge[j].w<aug) aug=edge[j].w;
pre[v]=u;
u=v;
if(u==t)
{
flow+=aug;
while(u!=s)
{
u=pre[u];
edge[cur[u]].w-=aug;
edge[cur[u]^1].w+=aug;
}
aug=inf;
}
break;
}
}
if(flag) continue;
int mindis=n;
for(int j=head[u]; j!=-1; j=edge[j].next)
{
int v=edge[j].v;
if(edge[j].w>0&&dis[v]<mindis)
{
mindis=dis[v];
cur[u]=j;
}
}
if((--gap[dis[u]])==0)
break;
gap[dis[u]=mindis+1]++;
u=pre[u];
}
return flow;
}
//初始化 cnt=0;memset(head,-1,sizeof(head));
int a[800];
int f[800];
int main()
{
int m;
while(scanf("%d",&m)==1)
{
for(int i=1;i<=m;i++) scanf("%d",&a[i]);
int maxl=1;
for(int i=1;i<=m;i++)
{
f[i]=1;
for(int j=1;j<i;j++)
{
if(a[j]<a[i]&&f[i]<f[j]+1) f[i]=f[j]+1;
}
maxl=max(maxl,f[i]);
}
cnt=0;
memset(head,-1,sizeof(head));
//每点只能用一次 所以要拆点 容量为1
n=m*2+2;
s=0;t=n-1;
for(int i=1;i<=m;i++)
{
addedge(i,i+m,1);
if(f[i]==maxl)
{
addedge(i+m,t,1);
}
if(f[i]==1)
{
addedge(0,i,1);
}
for(int j=1;j<i;j++)
{
if(f[i]==f[j]+1) addedge(j+m,i,inf);
}
}
int ans=sap();
printf("%d\n%d\n",maxl,ans);
}
return 0;
}
本文介绍了一种寻找序列中最长递增子序列的方法,并进一步探讨了如何确定该长度子序列的数量。通过实例说明了算法的具体实现过程,包括如何构建图模型并使用改进的最短路径算法进行求解。

被折叠的 条评论
为什么被折叠?



