hdu 3853 LOOPS

本文介绍了一种利用动态规划方法解决迷宫逃脱问题的技术,通过计算每个位置的期望魔法能量消耗来帮助角色成功逃脱。具体步骤包括定义状态转移方程、初始化边界条件并进行迭代计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

he planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS.




 

Input
The first line contains two integers R and C (2 <= R, C <= 1000).

The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces.

It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them).

You may ignore the last three numbers of the input data. They are printed just for looking neat.

The answer is ensured no greater than 1000000.

Terminal at EOF


 

Output
A real number at 3 decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.

 

Sample Input
  
  
2 2 0.00 0.50 0.50 0.50 0.00 0.50 0.50 0.50 0.00 1.00 0.00 0.00
 

Sample Output
  
  
6.000

//


#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int inf=(1<<29);
const int maxn=1100;
/*
设E(r,c)为已知当前在(r,c)的情况下,最后到达终点即(R,C)的期望值。则有E(R,C)=0,所求
为E(1,1) 。
显然整个过程为一Markov 链。易知
E(r,c) = 2 + P 向下(r,c)*E(r+1,c)+P 向右(r,c)*E(r,c+1)+P 不动(r,c)*E(r,c)
P 不动(r,c)不为1 时,移项有E(r,c) = (2 + P 向下(r,c)*E(r+1,c)+P 向右(r,c)*E(r,c+1))/(1-P 不动(r,c))。动
态规划解决即可。
P 不动(r,c)为1 时,就会有除0 问题,E(r,c)应为设为无穷大。
*/
double dp[maxn][maxn][4];//0:不动 1:向右 2:向下 3:answer
int r,c;
int main()
{
    while(scanf("%d%d",&r,&c)==2)
    {
        for(int i=1;i<=r;i++) for(int j=1;j<=c;j++)
            scanf("%lf%lf%lf",&dp[i][j][0],&dp[i][j][1],&dp[i][j][2]);
        dp[r][c][3]=0;
        for(int i=r;i>=1;i--)
        {
            for(int j=c;j>=1;j--)
            {
                if(i==r&&j==c) continue;
                if(fabs(dp[i][j][0]-1)<1e-6) {dp[i][j][3]=inf;continue;}
                dp[i][j][3]=2;
                if(i<r) dp[i][j][3]+=dp[i][j][2]*dp[i+1][j][3];
                if(j<c) dp[i][j][3]+=dp[i][j][1]*dp[i][j+1][3];
                dp[i][j][3]=dp[i][j][3]/(1-dp[i][j][0]);
            }
        }
        printf("%.3lf\n",dp[1][1][3]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值