sgu 106. The equation 已知ax + by + c = 0 ,求解在[x1,x2],[y1,y2]区间的解的个数

本文介绍了一种算法,用于解决给定线性方程 ax + by + c = 0 的情况下,在指定范围内找到所有满足条件的整数根 (x, y) 对的方法。通过扩展欧几里得算法计算最大公约数,并确定特定条件下整数根的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

106. The equation

time limit per test: 0.50 sec.
memory limit per test: 4096 KB

 

There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2,   y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

 

Input

Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value.

 

Output

Write answer to the output.

 

Sample Input

1 1 -3
0 4
0 4

 

Sample Output

4
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
__int64 exgcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    __int64 r=exgcd(b,a%b,x,y);
    __int64 t=x;x=y;y=t-a/b*y;
    return r;
}
int main()
{
    __int64 a,b,c,x1,x2,y1,y2,x,y;
    while(scanf("%I64d%I64d%I64d",&a,&b,&c)==3)
    {
        c=-c;
        scanf("%I64d%I64d%I64d%I64d",&x1,&x2,&y1,&y2);
        if(x1 > x2 || y1 > y2)
        {
            printf("0/n");
            continue;
        }
        //特殊情况a和b有1个为0 和 a和b同时为0
        if(!a||!b)
        {
            if(!a&&!b&&!c)//a和b同时为0
            {
                __int64 res1 = x2 - x1 + 1,res2 = y2 - y1 + 1;//会溢出,注意精度
                res1 = res1 * res2;
                printf("%I64d/n", res1);
                continue;
            }
            else if(!a&&!b&&c) //a和b同时为0
            {
                printf("0/n");continue;
            }
            else if(!a&&b)//a和b有1个为0 a为0
            {
                if(c%b)
                {
                    printf("0/n");continue;
                }
                else
                {
                    y=c/b;
                    if(y>=y1&&y<=y2) printf("%I64d/n",x2-x1+1);
                    else printf("0/n");
                    continue;
                }
            }
            else if(a&&!b)//a和b有1个为0 b为0
            {
                if(c%a)
                {
                    printf("0/n");continue;
                }
                else
                {
                    x=c/a;
                    if(x>=x1&&x<=x2) printf("%I64d/n",y2-y1+1);
                    else printf("0/n");
                    continue;
                }
            }
        }
        __int64 r=exgcd(a,b,x,y);
        if(c%r)
        {
            printf("0/n");continue;
        }
        x*=c/r,y*=c/r;//算出一个解
        __int64 _count=0;
        __int64 lx, rx, ly, ry;
        //x=x0+k*b/r,y=y0-k*a/r;
        //* *r/b== * /(b/r),* *r/a== * /(b/a)
        lx = (x1<=x || (x1-x)*r%b==0) ? (x1-x)*r/b : (x1-x)*r/b+1;
        rx = (x2>=x || (x-x2)*r%b==0) ? (x2-x)*r/b : (x2-x)*r/b-1;
        ly = (y1<=y || (y1-y)*r%a==0) ? (y-y1)*r/a : (y-y1)*r/a-1;
        ry = (y2>=y || (y-y2)*r%a==0) ? (y-y2)*r/a : (y-y2)*r/a+1;
        if (lx > rx) swap(lx, rx);
        if (ly > ry)  swap(ly, ry);
        if (lx <= ry && ly <= rx) { //求出两个区间交集的元素个数
            __int64 _max = (lx>ly) ? lx : ly;
            __int64  _min = (rx<ry) ? rx : ry;
            _count = _min-_max+1;
        }
        printf("%I64d/n",_count);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值