题目
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, “ACE” is a subsequence of “ABCDE” while “AEC” is not).
Here is an example:
S = “rabbbit”, T = “rabbit”
Return 3.
解法
给出字符串S和T,计算S中为T的不同的子序列的个数。
使用动态规划解题,设dp[i][j]为字符串s(0,i)变换到t(0,j)的变换方法:
如果S[i]==T[j]即当前字符相等,那么这个字符可以保留也可以抛弃,则变换方法总数等于保留字符的情况加上抛弃字符的情况,dp[i][j] = dp[i-1][j-1] + dp[i-1][j]。
如果S[i]!=T[i]即当前字符不等,抛弃这个字符,则dp[i][j] = dp[i-1][j]。
第0行全部初始化为1, 因为任何字符串要想按照条件变为空字符串都只有删掉字符一种情况, 所以都是1。
class Solution {
public:
int numDistinct(string s, string t) {
int ls = s.length(), lt = t.length();
if (ls < lt ) return 0;
int dp[lt + 1][ls + 1] = {0};
for (int i = 0; i <= ls; i++)
dp[0][i] = 1;
for (int i = 1; i <= lt; i++) {
for (int j = 1; j <= ls; j++) {
if (t[i - 1] == s[j - 1])
dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1];
else
dp[i][j] = dp[i][j - 1];
}
}
return dp[lt][ls];
}
};