import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
batch_size=100#批次大小
n_batch=mnist.train.num_examples//batch_size#批次数量
#初始化权重
def weight_variable(shape):
initial=tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial=tf.constant(0.1,shape=shape)
return tf.Variable(initial)
#卷积层
def conv2d(x,W):
#x是输入【batch,输入高度,输入宽度,输入通道】
#W是过滤器【高度,宽度,输入通道数,输出通道数】
#stride【0】=stride【3】,stride【1】代表x方向步长,stride【2】代表y方向的步长
#padding:“SAME”,"VALID"
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
#池化层
def max_pool2_2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])
x_image=tf.reshape(x,[-1,28,28,1])
#初始化第一层偏差与权重
W_conv1=weight_variable([5,5,1,32])
b_conv1=bias_variable([32])
#把x_image和权值进行卷积,再加上偏置,再用激活函数
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool2_2(h_conv1)
#第二层
#初始化
W_conv2=weight_variable([5,5,32,64])
b_conv2=bias_variable([64])
#卷积
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool2_2(h_conv2)
28*28图片第一次卷积以后是28*28,第一次池化后为14*14,
第二次卷积为14*14,池化后为7*7,
最后得到一个7*7的64通路的tensor
#初始化全连接层 W_fc1=weight_variable([7*7*64,1024]) b_fc1=bias_variable([1024]) h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64]) h_fcl=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) #keep_prob输出概率 keep_prob=tf.placeholder(tf.float32) h_fc1_drop=tf.nn.dropout(h_fcl,keep_prob) #第二个全连接层 W_fc2=weight_variable([1024,10]) b_fc2=bias_variable([10]) predction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=predction)) train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction=tf.equal(tf.arg_max(predction,1),tf.arg_max(y,1)) accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(21): for batch in range(n_batch): batch_xs,batch_ys=mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7}) acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}) print("Iter"+str(epoch)+" Testing Accuracy= "+str(acc))
运行结果如下: Iter0 Testing Accuracy= 0.9472 Iter1 Testing Accuracy= 0.971 Iter2 Testing Accuracy= 0.9751 Iter3 Testing Accuracy= 0.9796 Iter4 Testing Accuracy= 0.9833 Iter5 Testing Accuracy= 0.985 Iter6 Testing Accuracy= 0.987 Iter7 Testing Accuracy= 0.9864 Iter8 Testing Accuracy= 0.9876 Iter9 Testing Accuracy= 0.9872 Iter10 Testing Accuracy= 0.9878