tensorflow实现卷积神经网络手写数字识别

博客内容提及最终得到一个7*7的64通路的tensor,这可能涉及到数据处理或模型构建等信息技术相关操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist=input_data.read_data_sets('MNIST_data',one_hot=True)

batch_size=100#批次大小
n_batch=mnist.train.num_examples//batch_size#批次数量

#初始化权重
def weight_variable(shape):
    initial=tf.truncated_normal(shape,stddev=0.1)
    return tf.Variable(initial)
def bias_variable(shape):
    initial=tf.constant(0.1,shape=shape)
    return tf.Variable(initial)

#卷积层
def conv2d(x,W):
    #x是输入【batch,输入高度,输入宽度,输入通道】
    #W是过滤器【高度,宽度,输入通道数,输出通道数】
    #stride【0】=stride【3】,stride【1】代表x方向步长,stride【2】代表y方向的步长
    #padding:“SAME”,"VALID"
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

#池化层
def max_pool2_2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])
x_image=tf.reshape(x,[-1,28,28,1])
#初始化第一层偏差与权重
W_conv1=weight_variable([5,5,1,32])
b_conv1=bias_variable([32])
#把x_image和权值进行卷积,再加上偏置,再用激活函数
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool2_2(h_conv1)

#第二层
#初始化
W_conv2=weight_variable([5,5,32,64])
b_conv2=bias_variable([64])
#卷积
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool2_2(h_conv2)

28*28图片第一次卷积以后是28*28,第一次池化后为14*14,
第二次卷积为14*14,池化后为7*7,

最后得到一个7*7的64通路的tensor

#初始化全连接层
W_fc1=weight_variable([7*7*64,1024])
b_fc1=bias_variable([1024])

h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
h_fcl=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

#keep_prob输出概率
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fcl,keep_prob)
#第二个全连接层
W_fc2=weight_variable([1024,10])
b_fc2=bias_variable([10])
predction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=predction))
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction=tf.equal(tf.arg_max(predction,1),tf.arg_max(y,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
        acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
 
       print("Iter"+str(epoch)+" Testing Accuracy= "+str(acc))
运行结果如下:
Iter0 Testing Accuracy= 0.9472
Iter1 Testing Accuracy= 0.971
Iter2 Testing Accuracy= 0.9751
Iter3 Testing Accuracy= 0.9796
Iter4 Testing Accuracy= 0.9833
Iter5 Testing Accuracy= 0.985
Iter6 Testing Accuracy= 0.987
Iter7 Testing Accuracy= 0.9864
Iter8 Testing Accuracy= 0.9876
Iter9 Testing Accuracy= 0.9872
Iter10 Testing Accuracy= 0.9878

TensorFlow实现卷积神经网络(Convolutional Neural Network, CNN)用于手写数字识别是一个常见的机器学习任务。以下是一个简单的例子,使用MNIST数据集,它包含了60,000个训练样本和10,000个测试样本: ```python import tensorflow as tf from tensorflow.keras import datasets, layers, models # 加载MNIST数据集 (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() # 数据预处理 train_images = train_images / 255.0 test_images = test_images / 255.0 train_images = train_images[..., tf.newaxis] test_images = test_images[..., tf.newaxis] # 添加通道维度 # 构建CNN模型 model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) # 展平卷积层 model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) # 输出层,10个类别对应数字0-9 # 编译模型 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 训练模型 history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels)) # 测试模型性能 test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print(f'Test accuracy: {test_acc}') # 相关问题-- 1. 这段代码如何利用了CNN的特点? 2. 模型的优化器和损失函数是如何选择的? 3. 为什么需要对训练数据进行归一化处理?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值