total_test_loss = 0
total_accuracy = 0
len_test_iter = len(train_iter)
with torch.no_grad(): #测试不需要梯度
for data in test_iter:
imgs,targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outpus = model(imgs)
loss = loss_func(outpus,targets)
total_test_loss += loss.item() #直接用loss是varible形式,loss.item() 就成了一个数
accuracy = (outpus.argmax(1) == targets).sum() #横着比,获取最大值的下标(也是类别索引)
print(f"整体测试集上的loss:{total_test_loss}") #损失加起来
print(f"准确率:{accuracy/len_test_iter}") #拿正确的数量比总数量