记录第一次线下final

博主记录了自己首次参加线下final的经历,主要涉及AWD(Attack and Defense)模式的比赛。在比赛中,他们经历了从落后到逐渐追赶的过程,通过解决服务器问题、清除后门、应对不死马等挑战,排名有所提升。尽管最终排名13,但从中认识到自身在Web安全、漏洞利用、代码能力等方面的不足,计划寒假进行恶补。

ps:寒假前最后一篇。另外以后的更新就不在csdn了,会放到github上,贴个地址:k1ingzzz.github.io

记录第一次线下final

前言

总的来说被打的毫无还手之力,一路被锤,啥也不是,尤其是第一天。

第一次awd纪实

第一次awd就给我送了份见面礼,大概率是转接口的问题,等我连上服务器的时候已经过了三轮,我的web第一题已经被打掉了二百多分,rank来到29,而队里只有我一个web,所以我只能从头开始。一边down源码一边看根目录,已经多了几个.开头的php,打开一看,基本都是不死马。
down下来d盾杀一遍,挂杀马脚本,删后门,手忙脚乱。zz的我还删掉了index。。。。。。导致前期虽然干掉了大多数后门,但是check down了,每轮掉30。然而过了几轮我竟然惊奇的发现我们排名上升了?看榜才知道原来有的队伍是check down加hacked,一轮掉40+,于是我们慢慢的往上升,大致上来到了20出头的位置。
然后排名就开始波动,一会掉一会涨,我看了一下,check down的在减少,并且一队的dl开了另一个题,每轮多掉十分。所以我和队友赶紧等新一轮开始的时候重置了一下题目,在挂上杀马脚本,队友监控,我查杀,这次小心翼翼的没有删配置文件,于是我们check能过了,瞬间从check负三十变成了正的。
与此同时,新开了题目导致别的队伍开始乱,check down和hacked明显多了起来,但是我们稳住了,于是我们中期排名一路上涨来到15左右。这时候,我们发现了新的不死马,一般脚本杀不掉的那种。我代码能力水的一批,只能交给队友写专门的脚本来杀,发现是sleep(0)的那种,没办法,我们也只能sleep(0),试了一下好在没有宕机。然后我们继续上涨,最高的时候来到12。但是在最后,一队dl们down了一个题目全场服务器,并且我们的upload目录和cache目录下都多了图片的一句话,而且这个文件提权了,以我现在的水平还删不掉。在加上后面一个队伍开始疯狂得分,因此最后我们掉到了13。
这场awd一开始我完全被打蒙了,后面打

内容概要:本文围绕EKF SLAM(扩展卡尔曼滤波同步定位与地图构建)的性能展开多项对比实验研究,重点分析在稀疏与稠密landmark环境下、预测与更新步骤同时进行与非同时进行的情况下的系统性能差异,并进一步探讨EKF SLAM在有色噪声干扰下的鲁棒性表现。实验考虑了不确定性因素的影响,旨在评估不同条件下算法的定位精度与地图构建质量,为实际应用中EKF SLAM的优化提供依据。文档还提及多智能体系统在遭受DoS攻击下的弹性控制研究,但核心内容聚焦于SLAM算法的性能测试与分析。; 适合人群:具备一定机器人学、状态估计或自动驾驶基础知识的科研人员及工程技术人员,尤其是从事SLAM算法研究或应用开发的硕士、博士研究生和相关领域研发人员。; 使用场景及目标:①用于比较EKF SLAM在不同landmark密度下的性能表现;②分析预测与更新机制同步与否对滤波器稳定性与精度的影响;③评估系统在有色噪声等非理想观测条件下的适应能力,提升实际部署中的可靠性。; 阅读建议:建议结合MATLAB仿真代码进行实验复现,重点关注状态协方差传播、观测更新频率与噪声模型设置等关键环节,深入理解EKF SLAM在复杂环境下的行为特性。稀疏 landmark 与稠密 landmark 下 EKF SLAM 性能对比实验,预测更新同时进行与非同时进行对比 EKF SLAM 性能对比实验,EKF SLAM 在有色噪声下性能实验
内容概要:本文围绕“基于主从博弈的售电商多元零售套餐设计与多级市场购电策略”展开,结合Matlab代码实现,提出了一种适用于电力市场化环境下的售电商优化决策模型。该模型采用主从博弈(Stackelberg Game)理论构建售电商与用户之间的互动关系,售电商作为领导者制定电价套餐策略,用户作为跟随者响应电价并调整用电行为。同时,模型综合考虑售电商在多级电力市场(如日前市场、实时市场)中的【顶级EI复现】基于主从博弈的售电商多元零售套餐设计与多级市场购电策略(Matlab代码实现)购电组合优化,兼顾成本最小化与收益最大化,并引入不确定性因素(如负荷波动、可再生能源出力变化)进行鲁棒或随机优化处理。文中提供了完整的Matlab仿真代码,涵盖博弈建模、优化求解(可能结合YALMIP+CPLEX/Gurobi等工具)、结果可视化等环节,具有较强的可复现性和工程应用价值。; 适合人群:具备一定电力系统基础知识、博弈论初步认知和Matlab编程能力的研究生、科研人员及电力市场从业人员,尤其适合从事电力市场运营、需求响应、售电策略研究的相关人员。; 使用场景及目标:① 掌握主从博弈在电力市场中的建模方法;② 学习售电商如何设计差异化零售套餐以引导用户用电行为;③ 实现多级市场购电成本与风险的协同优化;④ 借助Matlab代码快速复现顶级EI期刊论文成果,支撑科研项目或实际系统开发。; 阅读建议:建议读者结合提供的网盘资源下载完整代码与案例数据,按照文档目录顺序逐步学习,重点关注博弈模型的数学表达与Matlab实现逻辑,同时尝试对目标函数或约束条件进行扩展改进,以深化理解并提升科研创新能力。
内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)题的Matlab代码实现,旨在解决物流与交通网络中枢纽节点的最优选址问题。通过构建数学模型,结合粒子群算法的全局寻优能力,优化枢纽位置及分配策略,提升网络传输效率并降低运营成本。文中详细阐述了算法的设计思路、实现步骤以及关键参数设置,并提供了完整的Matlab仿真代码,便于读者复现和进一步改进。该方法适用于复杂的组合优化问题,尤其在大规模网络选址中展现出良好的收敛性和实用性。; 适合人群:具备一定Matlab编程基础,从事物流优化、智能算法研究或交通运输系统设计的研究生、科研人员及工程技术人员;熟悉优化算法基本原理并对实际应用场景感兴趣的从业者。; 使用场景及目标:①应用于物流中心、航空枢纽、快递分拣中心等p-Hub选址问题;②帮助理解粒子群算法在离散优化问题中的编码与迭代机制;③为复杂网络优化提供可扩展的算法框架,支持进一步融合约束条件或改进算法性能。; 阅读建议:建议读者结合文中提供的Matlab代码逐段调试运行,理解算法流程与模型构建逻辑,重点关注粒子编码方式、适应度函数设计及约束处理策略。可尝试替换数据集或引入其他智能算法进行对比实验,以深化对优化效果和算法差异的理解。
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值