G - Non-Prime Factors

博客聚焦编程竞赛中计算整数非质因数数量的问题。以整数100为例,说明非质因数的概念,给出输入输出格式,输入包含查询数量及具体整数,输出对应整数的非质因数数量,还提醒因I/O文件大需用快速I/O方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

G - Non-Prime Factors

In many programming competitions, we are asked to find (or count the number of) Prime Factors of an integer i. This is boring. This time, let’s count the number of Non-Prime Factors of an integer i, denoted as NPF(i).

For example, integer 100 has the following nine factors: {1,2⎯⎯,4,5⎯⎯,10,20,25,50,100}. The two which are underlined are prime factors of 100 and the rest are non-prime factors. Therefore, NPF(100) = 7

.
Input

The first line contains an integer Q
(1≤Q≤3⋅106) denoting the number of queries. Each of the next Q lines contains one integer i (2≤i≤2⋅106

).
Output

For each query i

, print the value of NPF(i).
Warning

The I/O files are large. Please use fast I/O methods.

Input

4
100
13
12
2018

Output

7
1
4
2

#include<bits/stdc++.h>
using namespace std;
bool vis[2000005];
int ans[2000005];
void init()
{

    vis[1]=1;
    int m=sqrt(2000002+0.5);
    for(int i=2; i<=m; ++i)
        if(!vis[i]) 
        for(int j=i*i; j<=2000002; j+=i) 
        vis[j]=1;
    for(int i = 1; i <= 2000000; ++i)
    {
        int rt = 2000000/i;
        for(int j = i; j <= rt; ++j)
        {
            if(vis[i])
            {
                ++ans[i*j];
            }
            if(vis[j] && i!=j)
            {
                ++ans[i*j];
            }
        }
    }
}
int main()
{
    init();
    int q;
    scanf("%d",&q);
    while(q--)
    {
        int n;
        scanf("%d",&n);
        printf("%d\n",ans[n]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值