介绍
本文聚焦高并发场景下分布式一致性算法的分析和讨论
分布式场景下困扰我们的3个核心问题(CAP):一致性、可用性、分区容错性。
1、一致性(Consistency): 无论服务如何拆分,所有实例节点同一时间看到是相同的数据
2、可用性(Availability): 不管是否成功,确保每一个请求都能接收到响应
3、分区容错性(Partition Tolerance): 系统任意分区后,在网络故障时,仍能操作

而我们最为关注的是如何在高并发下保障 Data Consistency(数据一致性),因为在很多核心金融业务场景(如 支付、下单、跨行转账)中,为了避免资金问题,是需要强一致性结果的。而分布式一致性算法就是保障 Data Consistency的强大利刃,它的目标是确保分布式系统中多个节点在读取或修改同一份数据时,产生相同结果的关键机制。这些算法对于保证分布式系统的一致性和可靠性至关重要。常用的分布式算法:
-
Paxos算法
-
Raft算法
-
ZAB(ZooKeeper Atomic Broadcast)算法
2 主流分布式算法
2.1 Paxos算法
Paxos算法是一种用于分布式系统中保障一致性的算法,由Leslie Lamport于1990年提出,被广泛应用于分布式系统中的一致性问题,如分布式数据库、分布式存储系统等。该算法的主要目标是在一个由多个节点组成的分布式系统中,协调某个数据值并达成一致性,典型的少数服从多数的案例。
2.1.1 基本概念
1. 提案: 由提案号(id)和提案内容(value)组成,其中id主要用于实现Paxos算法,而value对应在实际的分布式系统中为所需要修改数据的命令 或者 log信息。
2. 角色: Paxos算法中抽象出来的概念,对应着实际分布式环境中的不同分工。主要角色包括提议者(Proposer)、批准者(Acceptor)和学习者(Learner)。
-
提议者负责提出值的提案
-
接受者负责接受提案并投票
-
学习者负责学习已经达成一致的值
<

最低0.47元/天 解锁文章
877

被折叠的 条评论
为什么被折叠?



