# -*-coding:utf-8-*-
# ---------------------
# Chapter 3 - Which borough has the most noise complaints (or, more selecting data).ipynb
# ---------------------
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
complaints = pd.read_csv('../data/311-service-requests.csv') # 读取csv文件
print complaints.head()
print complaints[:5]
'''
3.1 Selecting only noise complaints
'''
noise_complaints = complaints[complaints['Complaint Type'] == 'Noise - Street/Sidewalk']
print noise_complaints[:3]
print complaints['Complaint Type'] == 'Noise - Street/Sidewalk' # 返回True False
is_noise = complaints['Complaint Type'] == 'Noise - Street/Sidewalk'
in_brooklyn = complaints['Borough'] == 'BROOKLYN'
print complaints[is_noise & in_brooklyn][:5]
print complaints[is_noise & in_brooklyn][['Complaint Type', 'Borough', 'Created Date', 'Descriptor']][:10]
'''
3.2 A digression about numpy arrays
'''
pf = pd.Series([1, 2, 3])
print pf
print pf.values
print pf.index
nf = np.array([1, 2, 3])
print nf
print nf != 2
print nf[nf != 2]
'''
3.3 So, which borough has the most noise complaints?
'''
is_noise = complaints['Complaint Type'] == "Noise - Street/Sidewalk"
noise_complaints = complaints[is_noise]
print noise_complaints['Borough'].value_counts()
noise_complaint_counts = noise_complaints['Borough'].value_counts()
complaint_counts = complaints['Borough'].value_counts()
print noise_complaint_counts / complaint_counts
print noise_complaint_counts / complaint_counts.astype(float)
(noise_complaint_counts / complaint_counts.astype(float)).plot(kind='bar')
plt.show()
【Pandas-Cookbook】03:噪音数据处理
最新推荐文章于 2025-10-11 11:41:13 发布
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
Python3.11
Conda
Python
Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

3842

被折叠的 条评论
为什么被折叠?



