Replica Placement in DFS

本文深入探讨了Hadoop中名称节点如何选择数据节点存储副本,以平衡可靠性和带宽需求。通过放置策略分析,解释了如何实现双网架冗余、减少写带宽消耗并确保读取性能。

Replica Placement in DFS

 

Hadoop:
How does the namenode choose which datanodes to store replicas on? There’s a tradeoff between reliability and write bandwidth and read bandwidth here.

For example, placing all replicas on a single node incurs the lowest write bandwidth penalty since the replication pipeline runs on a single node, but this offers no real redundancy (if the node fails, the data for that block is lost). Also, the read bandwidth is high for off-rack reads. At the other extreme, placing replicas in different data centers may maximize redundancy, but at the cost of bandwidth. Even in the same data center (which is what all Hadoop clusters to date have run in), there are a variety of placement strategies.
Indeed, Hadoop changed its placement strategy in release 0.17.0 to one that helps keep a fairly even distribution of blocks across the cluster. (See “balancer” on page 284 for details on keeping a cluster balanced.)
Hadoop’s strategy is to place the first replica on the same node as the client (for clients running outside the cluster, a node is chosen at random, although the system tries not to pick nodes that are too full or too busy). The second replica is placed on a different rack from the first (off-rack), chosen at random.The third replica is placed on the same rack as the second, but on a different node chosen at random. Further replicas are placed on random nodes on the cluster, although the system tries to avoid placing too many replicas on the same rack.
Once the replica locations have been chosen, a pipeline is built, taking network topology into account. For a replication factor of 3, the pipeline might look like Figure 3-4.
Overall, this strategy gives a good balance between reliability (blocks are stored on two racks), write bandwidth (writes only have to traverse a single network switch), read
performance (there’s a choice of two racks to read from), and block distribution across the cluster (clients only write a single block on the local rack).

 

// some other issues about placement algorithm

1, 应该记录/预测前一段时间内向某机器分配的数据量, 到达一定值后降低分配到该机器的概率. 因为该机器网络会成为瓶劲.

2, 在考虑机器磁盘free disk size 时, 可能会好的办法是考虑磁盘的空间使用率, 使用率高的被选中的概率高. 因为集内可能磁盘异构.

 

<think> 我们正在讨论Kubernetes中的ReplicaSet状态显示为"In Progress"的含义及原因。 在Kubernetes中,ReplicaSet的状态通常由`kubectl get rs`命令输出,其中可能包含"DESIRED", "CURRENT", "READY"等列,但标准输出中并没有直接称为"In Progress"的状态列。不过,我们可以推测当ReplicaSet的Pod副本数未达到预期时,其状态可能被描述为“进行中”(In Progress)。 可能的原因: 1. **正在创建Pod**:当创建或更新ReplicaSet时,Kubernetes需要时间创建Pod并调度到节点上。 2. **资源不足**:节点没有足够的资源(CPU、内存)来调度新的Pod。 3. **镜像拉取缓慢**:Pod使用的镜像较大或镜像仓库响应慢,导致Pod处于ContainerCreating状态。 4. **就绪探针未通过**:Pod已经运行,但就绪探针(Readiness Probe)未通过,因此未被计入READY计数。 5. **节点问题**:节点处于NotReady状态,导致Pod无法运行。 诊断步骤: 1. 查看ReplicaSet详情: ```bash kubectl describe rs <replicaset-name> ``` 2. 查看关联Pod的状态: ```bash kubectl get pods -l <replicaset-selector> ``` 观察Pod的状态(如Pending、ContainerCreating、Waiting、CrashLoopBackOff等)。 解决方案: - 如果因为资源不足,考虑增加节点或调整资源请求。 - 如果镜像拉取慢,尝试使用更小的镜像或优化网络。 - 检查就绪探针配置,确保应用能够通过健康检查。 - 检查节点状态,修复问题节点。 示例:当ReplicaSet期望3个Pod,但只有2个Ready时,可以认为有一个Pod还在“In Progress”状态。 注意:ReplicaSet本身不直接报告“In Progress”状态,这通常是用户根据副本数未达到预期而描述的状态。 因此,当看到ReplicaSet处于这种状态时,应检查其Pod的创建情况。 </think>ReplicaSet 状态显示为 "In Progress" 表示 Kubernetes 正在处理 ReplicaSet 的变更过程,但尚未完成期望状态的同步。这通常发生在以下场景: --- ### 核心原因分析 1. **Pod 创建/删除操作中** Kubernetes 正在创建新 Pod 或终止旧 Pod 以达到 `spec.replicas` 指定的副本数。例如: - 扩容时:新 Pod 处于 `ContainerCreating` 状态 - 缩容时:旧 Pod 处于 `Terminating` 状态 2. **滚动更新进行中** 当 Deployment 触发滚动更新时,ReplicaSet 会逐步替换旧 Pod: ```bash kubectl rollout status deployment/<name> # 查看更新进度 ``` 3. **资源限制阻塞** 节点资源不足导致 Pod 无法调度: ```bash kubectl describe pod <pod-name> | grep -A 10 Events # 查看调度事件 ``` 4. **依赖未就绪** Pod 依赖的 ConfigMap/Secret/PVC 未准备完成: ```bash kubectl get pvc,configmap,secret # 检查依赖资源状态 ``` --- ### 诊断步骤 1. **检查 ReplicaSet 详情** ```bash kubectl describe rs <replicaset-name> ``` 关注以下字段: - `Replicas: desired | current | ready` - `Events:` 中的警告信息 2. **查看关联 Pod 状态** ```bash kubectl get pods -l app=<label-selector> ``` 常见阻塞状态: - `Pending`: 调度失败 - `Init:0/1`: 初始化容器未完成 - `ContainerCreating`: 镜像拉取/存储挂载中 3. **检查控制器事件** ```bash kubectl get events --sort-by='.metadata.creationTimestamp' ``` --- ### 解决方案 | 场景 | 处理方式 | |------|----------| | 镜像拉取慢 | 1. 使用更小的镜像<br>2. 配置镜像缓存(pre-pulled) | | 资源不足 | 1. 增加节点资源<br>2. 优化资源请求(request/limit) | | 存储卷问题 | 1. 检查 PVC 状态<br>2. 验证 StorageClass 配置 | | 启动探针失败 | 1. 延长 `initialDelaySeconds`<br>2. 修复应用健康检查逻辑 | --- ### 强制完成操作(谨慎使用) ```bash # 删除卡在 Terminating 的 Pod kubectl delete pod <name> --force --grace-period=0 # 回滚到上一版本 kubectl rollout undo deployment/<name> ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值