DSBase要解决的问题

有一天,有个人说:

有一个电商系统,每天都会生成2百万条交易,目前靠Oracle支撑,性能还算可以,如果有钱的前提下,估计还能支撑个几年;但很不幸,所有电商应用系统的业务目标几乎都是是力图赶超全球第一牛逼的电商,所以呢,以Oracle为基石的它死定了。

然后他问我:如果是你,你怎么办?

我哈哈一笑,活该,谁让它用Oracle

实际上问题很简单,就是普通的CRUD,问题不简单,就是数据量太大了

HBase是目前唯一不要钱的,口碑还算可以的解决方案了,看起来前途也很光明,不过呢,它有两个问题很无聊:

1. 事务性那是极其弱

2. 查询那是极其弱

人家说了,CAP不能同时支持

唉,话虽然这么讲,俺们也要努力去尝试一下给HBase打个补丁

所以屌丝贝斯(DSBase)要解决的问题是:

1. 增强HBase的事务性

2. 增强HBase的查询

3. 让屌丝都能知道怎么做


我只提供思路,不要指望我提供代码实现,我指望有志之士提供代码实现

思路还在酝酿中,等我1个月酝酿成熟



import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline import tensorflow as tf import random from cv2 import resize from glob import glob import warnings warnings.filterwarnings("ignore")img_height = 244 img_width = 244 train_ds = tf.keras.utils.image_dataset_from_directory( 'D:/Faulty_solar_panel', validation_split=0.2, subset='training', image_size=(img_height, img_width), batch_size=32, seed=42, shuffle=True) val_ds = tf.keras.utils.image_dataset_from_directory( 'D:/Faulty_solar_panel', validation_split=0.2, subset='validation', image_size=(img_height, img_width), batch_size=32, seed=42, shuffle=True)class_names = train_ds.class_names print(class_names) train_dsbase_model = tf.keras.applications.VGG16( include_top=False, weights='imagenet', input_shape=(img_height, img_width, 3) ) base_model.trainable = False inputs = tf.keras.Input(shape=(img_height, img_width, 3)) x = tf.keras.applications.vgg16.preprocess_input(inputs) x = base_model(x, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.3)(x) outputs = tf.keras.layers.Dense(90)(x) model = tf.keras.Model(inputs, outputs) model.summary()model.compile(optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])epoch = 15 model.fit(train_ds, validation_data=val_ds, epochs=epoch, callbacks = [ tf.keras.callbacks.EarlyStopping( monitor="val_loss", min_delta=1e-2, patience=3, verbose=1, restore_best_weights=True ) ] )# fine tuning base_model.trainable = True for layer in base_model.layers[:14]: layer.trainable = False model.summary()model.compile(optimizer=tf.keras.optimizers.Adam(0.0001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])epoch = 15 history = model.fit(train_ds, validation_data=val_ds, epochs=epoch, callbacks = [ tf.keras.callbacks.EarlyStopping( monitor="val_loss", min_delta=1e-2, patience=3, verbose=1, ) ] )改进代码,使用更好的模型
03-30
将 pandas 导入为 PD 将 numpy 导入为 NP 将 Seaborn 导入为 SNS 将 matplotlib.pyplot 导入为 PLT %matplotlib 内联 将 TensorFlow 导入为 TF 导入随机 从 cv2 import 调整大小 from glob import glob 导入警告 warnings.filterwarnings(“ignore”)img_height = 244 img_width = 244 train_ds = tf.keras.utils.image_dataset_from_directory( 'D:/Faulty_solar_panel', validation_split=0.2, subset='training', image_size=(img_height, img_width), batch_size=32, seed=42, shuffle=True) val_ds = tf.keras.utils.image_dataset_from_directory( 'D:/Faulty_solar_panel', validation_split=0.2, subset='validation', image_size=(img_height, img_width), batch_size=32, seed=42, shuffle=True)class_names = train_ds.class_names 打印(class_names) train_dsbase_model = tf.keras.applications.VGG16( include_top=False、 weights='imagenet', input_shape=(img_height、img_width、3) ) base_model.trainable = False inputs = tf.keras.Input(shape=(img_height, img_width, 3)) x = tf.keras.applications.vgg16.preprocess_input(输入) x = base_model(x, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.3)(x) 输出 = tf.keras.layers.Dense(90)(x) 模型 = tf.keras.Model(输入,输出) model.summary()model.compile(optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])epoch = 15 model.fit(train_ds, validation_data=val_ds, epochs=纪元, 回调 = [ tf.keras.callbacks.EarlyStopping( monitor=“val_loss”, min_delta=1e-2, 耐心 = 3, verbose=1, restore_best_weights=真 ) ] )# 微调 base_model.trainable = 真 对于 base_model.layers[:14] 中的 layer: layer.trainable = 假 model.summary()model.compile(optimizer=tf.keras.optimizers.Adam(0.0001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])epoch = 15 历史 = model.fit(train_ds, validation_data=val_ds, epochs=epoch, 回调 = [ tf.keras.callbacks.EarlyStopping( monitor=“val_loss”, min_delta=1e-2, 耐心 = 3, verbose=1, ) ] ) get_ac = history.history['准确性'] get_los = history.history['损失'] val_acc = history.history['val_accuracy'] val_loss = history.history['val_loss'] 纪元 = 范围(len(get_ac)) plt.plot(epochs, get_ac, 'g', label='训练数据的准确性') plt.plot(epochs, get_los, 'r', label='训练数据丢失') plt.title('训练数据准确性和损失') plt.legend(loc=0) plt.figure() plt.plot(epochs, get_ac, 'g', label='训练数据的准确性') plt.plot(epochs, val_acc, 'r', label='验证数据的准确性') plt.title('训练和验证准确性') plt.legend(loc=0) plt.figure() plt.plot(epochs, get_los, 'g', label='训练数据丢失') plt.plot(纪元, val_loss, 'r', label='验证数据丢失') plt.title('训练和验证损失') plt.legend(loc=0) plt.figure() plt.show()把这段代码使用的模型改为mobilenet模型并提升精度,给出修改后的完整代码
03-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值