mmc整体架构

Mmc Controller Driver  。
看了这篇文章文章对sd卡的驱动有了一个整体的了解。

linux-2.6.2x的mmc驱动与linux-2.6.1x的mmc驱动的区别
在linux-2.6.2x中,mmc驱动用到的block_device_operations结构已重新定义,请看:
linux-2.6.1x:

struct block_device_operations {
    int (*open) (struct inode *, struct file *);
    int (*release) (struct inode *, struct file *);
    int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);
    int (*media_changed) (struct gendisk *);
    int (*revalidate_disk) (struct gendisk *);
    struct module *owner;
};

linux-2.6.2x

struct block_device_operations {
    int (*open) (struct inode *, struct file *);
    int (*release) (struct inode *, struct file *);
    int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);
    long (*unlocked_ioctl) (struct file *, unsigned, unsigned long);
    long (*compat_ioctl) (struct file *, unsigned, unsigned long);
    int (*direct_access) (struct block_device *, sector_t, unsigned long *);
    int (*media_changed) (struct gendisk *);
    int (*revalidate_disk) (struct gendisk *);
    int (*getgeo)(struct block_device *, struct hd_geometry *);
    struct module *owner;
};

注意到新版本的block驱动接口结构增加了gntgeo成员,使调用者可以直接调用此函数获得设备的几何结构。

工作流程:
mmc驱动主要文件包括
drivers/mmc/card/block.c
drivers/mmc/card/queue.c
drivers/mmc/core/core.c
drivers/mmc/core/host.c
drivers/mmc/core/
内核启动时,首先执行core/core.c的mmc_init,注册mmc、sd总线,以及一个host class设备。接着执行card/block.c中,申请一个块设备。

数据结构:
mmc总线操作相关函数,由于mmc卡支持多种总数据线,如SPI、SDIO、8LineMMC,而不同的总线的操作控制方式不尽相同,所以通过此结构与相应的总线回调函数相关联。

//总线操作结构
struct mmc_bus_ops {
    void (*remove)(struct mmc_host *);
    void (*detect)(struct mmc_host *);
    int (*sysfs_add)(struct mmc_host *, struct mmc_card *card);
    void (*sysfs_remove)(struct mmc_host *, struct mmc_card *card);
    void (*suspend)(struct mmc_host *);
    void (*resume)(struct mmc_host *);
};
//  mmc卡的总线操作 core/mmc.c
static const struct mmc_bus_ops mmc_ops = {
    .remove = mmc_remove,
    .detect = mmc_detect,
    .sysfs_add = mmc_sysfs_add,
    .sysfs_remove = mmc_sysfs_remove,
    .suspend = mmc_suspend,
    .resume = mmc_resume,
};
// sd卡的总线操作 core/sd.c
static const struct mmc_bus_ops mmc_sd_ops = {
    .remove = mmc_sd_remove,
    .detect = mmc_sd_detect,
    .sysfs_add = mmc_sd_sysfs_add,
    .sysfs_remove = mmc_sd_sysfs_remove,
    .suspend = mmc_sd_suspend,
    .resume = mmc_sd_resume,
};
// sdio的总线操作 core/sdio.c
static const struct mmc_bus_ops mmc_sdio_ops = {
    .remove = mmc_sdio_remove,
    .detect = mmc_sdio_detect,
};

关于总线操作的函数:
.detect,驱动程序经常需要调用此函数去检测mmc卡的状态,具体实现是发送CMD13命令,并读回响应,如果响应错误,则依次调用.remove、detach_bus来移除卡及释放总线。

总体架构:
kernel启动时,先后执行mmc_init()及mmc_blk_init(),以对mmc设备及mmc块模块进行初始化。
然后在挂载mmc设备驱动时,执行驱动程序中的xx_mmc_probe(),检测host设备中挂载的sd设备。此时probe函数会创建一个host设备,然后开启一个延时任务mmc_rescan()。
驱动挂载成功后,mmc_rescan()函数被执行,然后对卡进行初始化(步骤后面详细讲述)。
假如扫描到总线上挂有有效的设备,就调用相对应的函数把设备装到系统中,mmc_attach_sdio()、mmc_attach_sd()、mmc_attach_mmc()这三个函数分别是装载sdio设备,sd卡和mmc卡的。
在sd卡中,驱动循环发送ACMD41、CMD55给卡,读取OCR寄存器,成功后,依次发送CMD2(读CID)、CMD3(得到RCA)、 CMD9(读CSD)、CMD7(选择卡)。后面还有几个命令分别是ACMD41&CMD51,使用CMD6切换一些功能,如切换到高速模式。
经过上述步骤,已经确定当前插入的卡是一张有效、可识别的存储卡。然后调用mmc_add_card()把存储卡加到系统中。正式与系统驱动连接在一起。
卡设备加到系统中后,通知mmc块设备驱动。块设备驱动此时调用probe函数,即mmc_blk_probe()函数,mmc_blk_probe() 首先分配一个新的mmc_blk_data结构变量,然后调用mmc_init_queue,初始化blk队列。然后建立一个线程 mmc_queue_thread()。

mmc_rescan:mmc_rescan()函数是在驱动装载的时候,由驱动xx_mmc_probe()调用 mmc_alloc_host()时启动的一个延时任务。 xx_mmc_probe()->mmc_alloc_host()->INIT_DELAYED_WORK(&host->detect, mmc_rescan);

core部分
1、取得总线
2、检查总线操作结构指针bus_ops,如果为空,则重新利用各总线对端口进行扫描,检测顺序依次为:SDIO、Normal SD、MMC。当检测到相应的卡类型后,就使用mmc_attach_bus()把相对应的总线操作与host连接起来。

void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
{
    ...
    host->bus_ops = ops;
    ...
}

3、初始化卡接以下流程初始化:
a、发送CMD0使卡进入IDLE状态
b、发送CMD8,检查卡是否SD2.0。SD1.1是不支持CMD8的,因此在SD2.0 Spec中提出了先发送CMD8,如响应为无效命令,则卡为SD1.1,否则就是SD2.0(请参考SD2.0 Spec)。
c、发送CMD5读取OCR寄存器。
d、发送ACMD55、CMD41,使卡进入工作状态。MMC卡并不支持ACMD55、CMD41,如果这步通过了,则证明这张卡是SD卡。
e、如果d步骤错误,则发送CMD1判断卡是否为MMC。SD卡不支持CMD1,而MMC卡支持,这就是SD和MMC类型的判断依据。
f、如果ACMD41和CMD1都不能通过,那这张卡恐怕就是无效卡了,初始化失败。


### MMC在Simulink中的仿真 #### 1. Simulink中MMC的基础组件 为了实现模块化多电平换流器(MMC)的高效仿真,在Simulink环境中需利用电力电子库提供的基础元件构建子模块。这些基本单元包括但不限于IGBT、二极管和其他必要的无源器件,通过组合可以形成MMC的核心结构[^2]。 #### 2. 子模块设计与参数配置 针对每个桥臂内的多个子模块(SM),应精心设定其电气特性参数,比如电容器容量的选择对于维持直流侧电压稳定至关重要;同时也要考虑开关频率等因素的影响来优化性能表现[^3]。 ```matlab % 设置子模块电容值C和电阻R SM_Capacitance = 0.001; % 单位:F 法拉 SM_Resistance = 0.01; % 单位:Ω 欧姆 ``` #### 3. 控制策略实施 采用合适的控制算法是确保MMC正常运行的关键所在。常见的做法是在控制系统层面引入比例积分(PI)控制器调节各相电流,并配合锁相环(PLL)同步电网信号,从而达到良好的动态响应效果并减少谐波失真度[^4]。 ```matlab % PI控制器设置 Kp = 1; Ki = 0.5; pidController = pid(Kp, Ki); ``` #### 4. 整体架构搭建流程说明 按照上述指导原则完成各个部分的设计之后,则可着手于整个系统的集成工作。具体而言就是把之前准备好的子模块连接起来构成完整的三相拓扑结构,再接入外部电源及负载端口即可得到初步成型的MMC模型框架[^5]。 #### 5. 实验验证环节 最后一步是对所建立的MMC-Simulink模型开展一系列测试实验以检验实际运作情况是否符合预期目标。这期间可能涉及到调整某些预设条件直至获得满意的结果为止[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值