学习了感知机之后,所要做的课后习题。
作业2:
1.思考感知机模型假设空间是什么?模型复杂度体现在哪里?打卡进行文字说明。
2.已知训练数据集D,其正实例点是x1=(3,3)T,x2=(4,3)T,负实例点是x3=(1,1)T:
(1) 用python 自编程实现感知机模型,对训练数据集进行分类,并对比误分类点选择次序不同对最终结果的影响。可采用函数式编程或面向对象的编程。
(2)试调用sklearn.linear_model 的Perceptron模块,对训练数据集进行分类,并对比不同学习率h对模型学习速度及结果的影响。