属性
//数组的默认长度 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//数组最大长度
static final int MAXIMUM_CAPACITY = 1 << 30;
//负载因子大小
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//树化阈值 >=8 链表转红黑树
static final int TREEIFY_THRESHOLD = 8;
//树降阀值 <=6 红黑树转为链表
static final int UNTREEIFY_THRESHOLD = 6;
//数组长度大于64 且满足树化>=8 才会将链表转红黑树
static final int MIN_TREEIFY_CAPACITY = 64;
put方法
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; //数组
Node<K,V> p; //开始头部指针
int n, i;//n 数组长度 i为数组下标
//数组为空或者长度为0,对数组进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//i = (n - 1) & hash n-1&hash 相当于取模
//tab[i]没有元素,直接插入结点到tab[i]
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//当前数组位置有值
Node<K,V> e;//记录需要插入的节点位置
K k;
//key和头节点key相同,hash相同
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//头节点为红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//为连表
else {
for (int binCount = 0; ; ++binCount) {
//从第二节点开始遍历
if ((e = p.next) == null) {
//下一个节点为空,添加数据
p.next = newNode(hash, key, value, null);
//链表长度>=8 链表转变为红黑树(双向连标)
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//此方法中,判断数组长度是否大于64,如果数组的长度不大,不转变,性能不好
treeifyBin(tab, hash);
break;
}
//后面的节点,有相同key,覆盖
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//找到了存放节点位置
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//不存在相同的key,新插入元素才执行下面的代码
++modCount;
//数组长度大于临界值
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
get方法
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//hash取模,找到数组桶的位置,key和头节点一样的,返回
if (first.hash == hash &&
((k = first.key) == key || (key != null && key.equals(k))))
return first;
//下一个节点
if ((e = first.next) != null) {
//如果是红黑树,while双向链表遍历
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
//链表,while遍历查询key返回
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
扩容
HashMap在进行扩容时,使用的rehash方式非常巧妙,因为每次扩容都是翻倍,与原来计算的 (n-1)&hash的结果相比,只是多了一个bit位,所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。当然resize非常消耗性能,要尽量避免
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
remove方法
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
//找到数组对应桶
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
//头节点
node = p;
else if ((e = p.next) != null) {
//next节点
if (p instanceof TreeNode)
//双链表 while双向遍历 红黑树
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
//遍历
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
//双向链表删除
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
//头节点替换
tab[index] = node.next;
else
// next节点替换
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}