数学B - Ant on a Chessboard

本文介绍了一种在M*M棋盘上进行蛇形遍历的算法实现,通过跟踪一个角色Alice的移动路径,确定她在任意给定时间的位置。文章详细解析了蛇形遍历的规律,并提供了一个C语言实现的示例程序。
One day, an ant called Alice came to an M*M chessboard. She wanted to go around all the grids. So
she began to walk along the chessboard according to this way: (you can assume that her speed is one
grid per second)
At the rst second, Alice was standing at (1,1). Firstly she went up for a grid, then a grid to the
right, a grid downward. After that, she went a grid to the right, then two grids upward, and then two
grids to the leftin a word, the path was like a snake.
For example, her rst 25 seconds went like this:
( the numbers in the grids stands for the time when she went into the grids)
25
24
23
22
21
5
10
11
12
13
20
4
9
8
7
14
19
3
2
3
6
15
18
2
1
4
5
16
17
1
1
2
3
4
5
At the 8-th second , she was at (2,3), and at 20-th second, she was at (5,4).
Your task is to decide where she was at a given time (you can assume that
M
is large enough).
Input
Input le will contain several lines, and each line contains a number
N
(1
N
2
10
9
), which stands
for the time. The le will be ended with a line that contains a number `
0
'.
Output
For each input situation you should print a line with two numbers (
x
,
y
), the column and the row
number, there must be only a space between them.
SampleInput
8
20
25
0
SampleOutput
2 3
5 4
1 5


这题太大 不能写一个数组出来

首先想到要找规律

先去看平方数

去看了题解

要从对角线开始看 

1 3 7 13 每两个数差2, 4, 6  数列首项1

num+= 2×(i  -  1 )

输入的数要和num比较大小 比num大的又要《=num + i -1

比num小的又要 = num - i + 1

在判断i的奇偶来决定x变还是y变

不知道为什么1 2 有问题 ,偷懒把它们提出来


#include <stdio.h>

int main(){
	int n, num = 1, x, y;
	while (scanf("%d", &n) != EOF) {
		if (n == 0)
			break;
		num = 1;
		if (n == 1) {
			x = 1;
			y = 1;
		}
		else if (n == 2) {
			x = 1;
			y = 2;
		}
		else 
		for (int i = 1; i < n; i++) {
			num += 2 * (i - 1);
			if (num == n) {
				x = i;
				y = i;
				break;
			}

			if (n > num && n <= num + i - 1) {
				if (i % 2 == 0) {
					x = i;
					y = i - n + num;
				}
				else {
					y = i;
					x = i - n + num;
				}
				break;		
			}
			else if (n < num && n >= num - i + 1) {
				if (i % 2 == 0) {
					y = i;
					x = i - num + n;
				}
				else {
					x = i;
					y = i - num + n;
				}
				break;
			}

		}
		printf("%d %d\n", x, y);
	}
	return 0;
}



内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值