ECCV 2020 | 腾讯优图8篇论文入选,涵盖目标跟踪、行人重识别、人脸识别等领域

 

近日,计算机视觉方向的三大国际顶级会议之一的ECCV 2020公布论文获奖结果。本次ECCV 2020有效投稿5025篇,最终被接受发表论文1361篇,录取率为27%,较上届有所下降。其中,oral的论文数为104篇,占提交总量的2%;spotlight的数目为161篇,占提交总量的5%;其余论文均为poster。

 

ECCV (European Conference on Computer Vision,即欧洲计算机视觉国际会议)是国际顶尖的计算机视觉会议之一,每两年举行一次。随着人工智能的发展,计算机视觉的研究深入和应用迅速发展,每次举行都会吸引大量的论文投稿,而今年ECCV的投稿量更是ECCV 2018的两倍还多,创下历史新高。在竞争越来越激烈的情况下,本次ECCV 腾讯优图实验室共入选8篇论文,涵盖目标跟踪、行人重识别、人脸识别、人体姿态估计、动作识别、物体检测等热门及前沿领域,再次展示了腾讯在计算机视觉领域的科研及创新实力。

 

以下为部分腾讯优图入选ECCV 2020的论文:

 

01

链式跟踪器:基于目标对回归的端到端联合检测跟踪算法

Chained-Tracker: 

Chaining Paired Attentive Regression Results for 

End-to-End Joint Multiple-Object Detection and Tracking

 

现有的多目标跟踪(MOT)算法大多是基于传统的先检测后跟踪的框架,包含目标检测、特征提取、目标关联这三个模块,还有少数MOT算法将三个模块中的某两个融合实现部分端到端跟踪,本文提出了一种链式跟踪算法Chained-Tracker(CTracker)业内首创两帧输入模式,可将上述三个模块集成至单个网络中,实现端到端联合检测跟踪,是第一个将跟踪算法中的目标关联问题转化为两帧检测框对(Box pair)回归问题的算法。网络的输入为相邻两帧,称之为节点(Chain node),网络的输出为表示同一个目标在相邻两帧中的检测框对,相邻节点的检测框对可通过共同帧关联。为进一步提高跟踪效果,我们还设计了联合注意力模块来突出检测框对回归中的有效信息区域,包括目标分类分支中的目标注意力机制和身份验证分支中的身份注意力机制。在不引入额外数据的情况下,CTracker在MOT16和MOT17上均获得了SOTA的结果,MOTA分别为67.6和66.6。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值