paddlepaddle 2.6版本在WSL2环境中如何使用NVIDIA显卡运行神经网络

本文讲述了如何在PaddlePaddle2.6版本中利用NVIDIACUDA12.x在WSL2环境下安装并解决遇到的libcuda.so找不到的问题,通过设置LD_LIBRARY_PATH使PaddlePaddle-gpu正常运行。
PaddlePaddle-v3.3

PaddlePaddle-v3.3

PaddlePaddle

PaddlePaddle是由百度自主研发的深度学习平台,自 2016 年开源以来已广泛应用于工业界。作为一个全面的深度学习生态系统,它提供了核心框架、模型库、开发工具包等完整解决方案。目前已服务超过 2185 万开发者,67 万企业,产生了 110 万个模型

paddlepaddle 2.6版本发布后,官网上可以使用NVIDIA cuda 12.x进行机器学习了,训练神经网络的效率大为提升。因为是在wsl2环境中安装,不是纯正的linux环境,其中一些小问题需要注意。

使用conda 安装飞浆,wsl2中安装了cuda 12.x,跟飞浆2.6兼容,按照官网指令即可:

conda create -n pp2cuda python=3.11
conda activate pp2cuda
conda install paddlepaddle-gpu==2.6.0 cudatoolkit=11.7 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge

 启动python,直接运行飞浆提示错误:

>>> paddle.utils.run_check()
# The third-party dynamic library (libcuda.so) that Paddle depends on 
# is not configured correctly. (error code is libcuda.so: cannot open 
# shared object file: No such file or directory)

 错误提示 libcuda.so找不到。在 /usr目录下查找:find /usr -name libcuda.so,将找到的目录加入环境变量即可:

# paddlepaddle 2.6.0 cuda
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/targets/x86_64-linux/lib/stubs/

再次测试飞浆,paddlepaddle-gpu可以正常通过了。

您可能感兴趣的与本文相关的镜像

PaddlePaddle-v3.3

PaddlePaddle-v3.3

PaddlePaddle

PaddlePaddle是由百度自主研发的深度学习平台,自 2016 年开源以来已广泛应用于工业界。作为一个全面的深度学习生态系统,它提供了核心框架、模型库、开发工具包等完整解决方案。目前已服务超过 2185 万开发者,67 万企业,产生了 110 万个模型

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值