原题链接:https://www.luogu.com.cn/problem/P1361
题意
有n个作物,种在A田可以获得ai权值,种在B田可以获得bi权值,接下来有一些作物组合放在AB田可以获得附加值c1,c2,问如何种植可以取得最大值
分析
一个植物可以种在A也可以种在B,非常明显的二选一操作,最后将作物分在两个集合中并且集合之间没有交集。可以想到最小割的原理,割去一些边使得两个集合没有交集,并且要取得最大值,那么割的边就要尽量小。
然后就是建图,先建两个超级原点,源点向作物连边,作物向汇点连边,这样基本的模型就完成了。然后是组合的情况,我们每次都建两个虚点代表A的附加值和B的附加值,从源点向虚点Ai连边边权是C1,Ai向组内的作物连边边权是INF,Bi同理,最后跑一遍最大流就可以了。
Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <bitset>
#include <map>
#include <set>
#include <stack>
#include <queue>
//#include <unordered_map>
using namespace std;
#define fi first
#define se second
#define re register
typedef long long ll;
typedef pair<ll, ll> PII;
typedef unsigned long long ull;
const int N = 1e5 + 10, M = 1e6 + 5, INF = 0x3f3f3f3f;
const int MOD = 1e9+7;
int st, ed, n;
ll ans;
struct Maxflow {
int h[N], cnt, deep[N], cur[N];
ll maxflow;
struct Edge {
int to, next;
ll cap;
} e[M<<1];
void init() {
memset(h, -1, sizeof h);
cnt = maxflow = 0;
}
void add(int u, int v, int cap) {
e[cnt].to = v;
e[cnt].cap = cap;
e[cnt].next = h[u];
h[u] = cnt++;
e[cnt].to = u;
e[cnt].cap = 0;
e[cnt].next = h[v];
h[v] = cnt++;
}
bool bfs() {
for (int i = 0; i <= 3010; i++) deep[i] = -1, cur[i] = h[i];
queue<int> q; q.push(st); deep[st] = 0;
while (q.size()) {
int u = q.front();
q.pop();
for (int i = h[u]; ~i; i = e[i].next) {
int v = e[i].to;
if (e[i].cap && deep[v] == -1) {
deep[v] = deep[u] + 1;
q.push(v);
}
}
}
if (deep[ed] >= 0) return true;
else return false;
}
ll dfs(int u, ll mx) {
ll a;
if (u == ed) return mx;
for (int i = cur[u]; ~i; i = e[i].next) {
cur[u] = i;//优化
int v = e[i].to;
if (e[i].cap && deep[v] == deep[u] + 1 && (a = dfs(v, min(e[i].cap, mx)))) {
e[i].cap -= a;
e[i ^ 1].cap += a;
return a;
}
}
return 0;
}
void dinic() {
ll res;
while (bfs()) {
while (1) {
res = dfs(st, INF);
if (!res) break;
maxflow += res;
}
}
}
}mf;
void solve() {
cin >> n; mf.init();
vector<int> a(n+1), b(n+1);
st = n+1, ed = n+2;
for (int i = 1; i <= n; i++) cin >> a[i];
for (int i = 1; i <= n; i++) cin >> b[i];
for (int i = 1; i <= n; i++) {
mf.add(st, i, a[i]);
mf.add(i, ed, b[i]);
ans += a[i] + b[i];
}
int q; cin >> q;
for (int i = 1; i <= q; i++) {
int num, c1, c2; cin >> num >> c1 >> c2;
ans += c1 + c2;
mf.add(st, n+i+2, c1);
mf.add(n+i+q+2, ed, c2);
for (int j = 1; j <= num; j++) {
int x; cin >> x;
mf.add(x, n+i+q+2, INF);
mf.add(n+i+2, x, INF);
}
}
mf.dinic();
cout << ans - mf.maxflow << endl;
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
#ifdef ACM_LOCAL
freopen("input", "r", stdin);
freopen("output", "w", stdout);
#endif
solve();
return 0;
}