void on_trackbar3(int h){ cvCanny( image, cedge, edge_thresh, edge_thresh*3, 3 ); cvShowImage("Adjust Canny Parameter",cedge);}void CCVMFCView::OnCannyAdjThres(){ cedge=cvCreateImage(cvGetSize(workImg),workImg->depth,1); IplImage* color_dst = 0; CvMemStorage* storage = cvCreateMemStorage(0); CvSeq* lines = 0; int i; if (workImg->nChannels==3) { image = cvCreateImage(cvGetSize(workImg), IPL_DEPTH_8U, 1); cvCvtColor(workImg, image, CV_BGR2GRAY); } else { image = cvCloneImage( workImg ); } cvFlip(image); dst = cvCreateImage( cvGetSize(image), 8 ,1 ); color_dst = cvCreateImage( cvGetSize(image), 8, 3 ); cvNamedWindow("Adjust Canny Parameter",CV_WINDOW_AUTOSIZE); //cvShowImage("Adjust Canny Parameter",image); cvCreateTrackbar("canny_thres","Adjust Canny Parameter",&edge_thresh,100,on_trackbar3); on_trackbar3(1); cvWaitKey(0); cvDestroyWindow("Adjust Canny Parameter"); cvCvtColor( cedge, color_dst, CV_GRAY2BGR ); cvFlip(color_dst); m_dibFlag=imageClone(color_dst,&workImg); m_ImageType=1; Invalidate();}

再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.youkuaiyun.com/jiangjunshow
本文介绍如何在OpenCV中动态调整Canny边缘检测参数,以获得最佳的边缘检测效果。通过实例教程,讲解参数选择的技巧,帮助读者深入理解边缘检测并提升实践技能。
1990





