UNIX环境C语言编程(17)-线程

本文介绍了线程的基本概念,包括创建、标识、终止线程的方法,以及如何进行线程间的同步处理,如互斥体、读写锁和条件变量的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、线程概念

一个典型的 Unix 进程可以认为是单一线程
多线程的好处:
1 、简化异步事件的处理,单独一个线程专职处理事件类型
2 、简化内存地址空间及文件描述符的共享
3 、可以提升整体吞吐量
4 、交互程序可以提高响应速度
线程包括用以描述一个执行上下文的必要信息:
线程 ID 、一组寄存器值、一个堆栈、一个调度优先级、信号掩码、 errno 变量、线程特定数据
可以检测宏 _POSIX_THREADS ,以确定当前环境是否支持线程

 

2、线程标识

线程是归属于进程的,每个线程有一个线程 ID ,只在所属的进程内有意义
比较线程 ID 是否相等
#include < pthread.h >
int pthread_equal ( pthread_t tid1, pthread_t tid2);
线程获取自己的线程 ID
pthread_t pthread_self (void);

 

3、创建线程

一个进程启动时,初始只有一个线程
创建新的线程
int pthread_create ( pthread_t *restrict tidp , const pthread_attr_t *restrict attr , void *(* start_rtn )(void *), void *restrict arg );
参数 tidp ,保存新建的线程 ID
attr ,指定线程属性,可以指定为 NULL
start_rtn ,指定线程的入口函数,它只有单个参数 arg
如果给入口函数传递多个参数,封装在一个结构中,在 arg 中存放结构的地址
 
编译命令: gcc thrtest.c - l pthread
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void printids(const char *s)
{
    printf("%s pid %u tid %u (0x%x)\n",
        s, (unsigned int)getpid(),
        (unsigned int)pthread_self(), (unsigned int)pthread_self());
}

void * thr_fn(void *p)
{
    printids("new thread: ");
    return((void *)0);
}

int main(void)
{
    pthread_t ntid;

    if( pthread_create(&ntid, NULL, thr_fn, NULL) )
    {
        perror("can't create thread");
        exit(0);
    }
    printf("ntid=%#x\n", ntid);
    printids("main thread:");

    sleep(1);    /* Giving a chance for the new thread to run */
    exit(0);
}


4、线程终止

如果进程内的任何一个线程调用 exit ,整个进程将终止
单个线程的终止可以有 3 种方式:
1 、从线程自己的入口函数 return
2 、被同一个进程内的另外一个线程 cancel
3 、调用 pthread_exit
void pthread_exit (void * rval_ptr );
int pthread_join ( pthread_t thread, void ** rval_ptr );  // 等待线程终止
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void * thr_fn1(void *arg)
{
    printf("thread 1 returning\n");
    return((void *)1);
}

void * thr_fn2(void *arg)
{
    printf("thread 2 exiting\n");
    pthread_exit((void *)2);
}

void err_quit(char *p)
{
    perror(p);
    exit(0);
}

int main(void)
{
    int         err;
    pthread_t   tid1, tid2;
    void        *tret;

    err = pthread_create(&tid1, NULL, thr_fn1, NULL);
    if( err != 0 ) err_quit("can't create thread 1");
    err = pthread_create(&tid2, NULL, thr_fn2, NULL);
    if( err != 0 ) err_quit("can't create thread 2");

    err = pthread_join(tid1, &tret);
    if( err != 0 ) err_quit("can't join with thread 1");
    printf("thread 1 exit code %d\n", (int)tret);

    err = pthread_join(tid2, &tret);
    if( err != 0 ) err_quit("can't join with thread 2");
    printf("thread 2 exit code %d\n", (int)tret);

    exit(0);
}

注意: pthread_exit () 不能返回一个局部变量的地址
一个错误示例:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

struct foo {
    int a, b, c, d;
};

void err_quit(char *p)
{
    perror(p);
    exit(0);
}

void printfoo(const char *s, const struct foo *fp)
{
    printf(s);
    printf("  structure at 0x%x\n", (unsigned)fp);
    printf("  foo.a = %d\n", fp->a);
    printf("  foo.b = %d\n", fp->b);
    printf("  foo.c = %d\n", fp->c);
    printf("  foo.d = %d\n", fp->d);
}

void * thr_fn1(void *arg)
{

    struct foo  foo = {1, 2, 3, 4};

    printfoo("thread 1:\n", &foo);
    pthread_exit((void *)&foo);
}

void * thr_fn2(void *arg)
{
    printf("thread 2: ID is %u\n", pthread_self());
    pthread_exit((void *)0);
}

int main(void)
{
    int         err;
    pthread_t   tid1, tid2;
    struct foo  *fp;

    err = pthread_create(&tid1, NULL, thr_fn1, NULL);
    if (err != 0) err_quit("can't create thread 1");
    err = pthread_join(tid1, (void *)&fp);
    if (err != 0) err_quit("can't join with thread 1");
    sleep(1);

    printf("parent starting second thread\n");
    err = pthread_create(&tid2, NULL, thr_fn2, NULL);
    if (err != 0) err_quit("can't create thread 2");

    sleep(1);
    printfoo("parent:\n", fp);
    exit(0);
}

int pthread_cancel ( pthread_t tid );  // 请求线程终止
 
线程清理处理(回顾一下进程退出时的清理, atexit ()
void pthread_cleanup_push (void (* rtn )(void *), void * arg );
void pthread_cleanup_pop ( int execute);
必须成对使用
清理函数的调用时机:
1 、当线程调用 pthread_exit ()
2 、线程被 cancel
3 、使用非 0 参数调用 pthread_cleanup_pop ()
注意:线程 return 时,并不执行清理函数
 
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void cleanup(void *arg)
{
    printf("cleanup: %s\n", (char *)arg);
}

void * thr_fn1(void *arg)
{
    printf("thread 1 start\n");
    pthread_cleanup_push(cleanup, "thread 1 first handler");
    pthread_cleanup_push(cleanup, "thread 1 second handler");
    printf("thread 1 push complete\n");
    if (arg) return((void *)1);

    pthread_cleanup_pop(0);
    pthread_cleanup_pop(0);
    return((void *)1);
}

void * thr_fn2(void *arg)
{
    printf("thread 2 start\n");
    pthread_cleanup_push(cleanup, "thread 2 first handler");
    pthread_cleanup_push(cleanup, "thread 2 second handler");
    printf("thread 2 push complete\n");
    if (arg) pthread_exit((void *)2);

    pthread_cleanup_pop(0);
    pthread_cleanup_pop(0);
    pthread_exit((void *)2);
}

void err_quit(char *p)
{
    perror(p);
    exit(0);
}

int
main(void)
{
    int         err;
    pthread_t   tid1, tid2;
    void        *tret;

    err = pthread_create(&tid1, NULL, thr_fn1, (void *)1);
    if (err != 0) err_quit("can't create thread 1");
    err = pthread_create(&tid2, NULL, thr_fn2, (void *)1);
    if (err != 0) err_quit("can't create thread 2");

    err = pthread_join(tid1, &tret);
    if (err != 0) err_quit("can't join with thread 1");
    printf("thread 1 exit code %d\n", (int)tret);

    err = pthread_join(tid2, &tret);
    if (err != 0) err_quit("can't join with thread 2");
    printf("thread 2 exit code %d\n", (int)tret);

    exit(0);
}

 
int pthread_detach ( pthread_t tid );  // 分离一个线程
线程结束后,资源立即释放,不能通过 pthread_join () 获取其退出状态
备注:调用 pthread_join 后,自动将线程置为 detached 状态
 
5、 线程同步
互斥体
int pthread_mutex_init ( pthread_mutex_t *restrict mutex , const pthread_mutexattr_t *restrict attr );
int pthread_mutex_destroy ( pthread_mutex_t * mutex );
int pthread_mutex_lock ( pthread_mutex_t * mutex );
int pthread_mutex_trylock ( pthread_mutex_t * mutex );
int pthread_mutex_unlock ( pthread_mutex_t * mutex );
读写锁
int pthread_rwlock_init ( pthread_rwlock_t *restrict rwlock , const pthread_rwlockattr_t *restrict attr );
int pthread_rwlock_destroy ( pthread_rwlock_t * rwlock );
int pthread_rwlock_rdlock ( pthread_rwlock_t * rwlock );
int pthread_rwlock_wrlock ( pthread_rwlock_t * rwlock );
int pthread_rwlock_unlock ( pthread_rwlock_t * rwlock );
int pthread_rwlock_tryrdlock ( pthread_rwlock_t * rwlock );
int pthread_rwlock_trywrlock ( pthread_rwlock_t * rwlock );
 
条件变量
int pthread_cond_init ( pthread_cond_t *restrict cond , pthread_condattr_t *restrict attr );
int pthread_cond_destroy ( pthread_cond_t * cond );
int pthread_cond_wait ( pthread_cond_t *restrict cond , pthread_mutex_t *restrict mutex );
int pthread_cond_timedwait ( pthread_cond_t *restrict cond , pthread_mutex_t *restrict mutex , const struct timespec *restrict timeout);
int pthread_cond_signal ( pthread_cond_t * cond );
int pthread_cond_broadcast ( pthread_cond_t * cond );
条件变量总是与互斥体搭配使用的
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int a = 0;
pthread_cond_t qready = PTHREAD_COND_INITIALIZER;
pthread_mutex_t qlock = PTHREAD_MUTEX_INITIALIZER;

void * reader(void *arg)
{
    for( ;; )
    {
        pthread_mutex_lock(&qlock);
        while( a == 0 )
            pthread_cond_wait(&qready, &qlock);

        printf("%d: a=%d\n", (int)arg, a);
        a = 0;
        pthread_mutex_unlock(&qlock);
    }
}

void * writer(void *arg)
{
    int i = 1;

    for( ; i < 100; i++ )
    {
        pthread_mutex_lock(&qlock);
        a = i;
        pthread_mutex_unlock(&qlock);
        pthread_cond_signal(&qready);		// 通知等待线程:“条件变量已改变”
    }
}

void err_quit(char *p)
{
    perror(p);
    exit(0);
}

int main(void)
{
    int         i, err;
    pthread_t   tid1, tid[64];

    for( i = 0; i < 64; i++ )
    {
        err = pthread_create(&tid[i], NULL, reader, (void *)i);
        if( err != 0 ) err_quit("can't create thread 2");
    }

printf("sleep 3 ...\n");
sleep(3);
    err = pthread_create(&tid1, NULL, writer, NULL);
    if( err != 0 ) err_quit("can't create thread 1");

sleep(3);
    exit(0);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值