CS61C-disc01

这篇博客介绍了CS61C课程的第一部分,内容涉及二进制表示、位运算、数制转换以及溢出规则。讨论了不同基数系统的特点,如为何计算机常用二进制和十六进制。同时提到了二进制信号的优势和溢出的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

discs1
aims: a conceptual check

1.1 true (not exactly) 1.2 false 1.3 false 1.4 true

2 (a) 1. 0b10010011 0x93 0d147; 2. 63 0b0111111 0x3F the later the same method, so skip it

2 (b) 1. 0b1101001110101101 skip the same way

2 © 2^16 = 64 Ki the same skip

2 (d) 2 Ki = 2^11 skip the same

3 (a) two’s 127 -128 (don’t understand the homework when I was doing them)

3(b) biased not know exactly

3© 3

3(d) 256 unsigned No such integer? 1to256 instead of 0 to 255

3(e)(拍照纸上)

​ Thought: we assume that x abcdefgh with 8 bits. a,b,c,d,e,f,g,h all represent 0 or 1.
在这里插入图片描述

3(f)

​ why the three radices shine?

base 10: maybe that’s because people have 10 fingers
​ base 2: It’s better for computer. But why it’s better for computers, I don’t know.

​ base 16: one digit of base16 can symbol 4 digits of 2. But why base 8 is not used. I don’t know neither.

Extracts from the solution:

Binary signals are less likely to be garbled than higher radix signals, as there is more “distance” (voltage or current) between valid signals. Additionally, binary signals are quite convenient to design circuits, as we’ll see later in the course.

4(a) 2 overflow reference: Two’s Complement Overflow Rules

4(b) 1.8bits 2.7bits 3. ? an: 7bits 64 numbers 4. 2^43 < 12* 2^40 < 2^44

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值