概念
方法
1.越接近1约相似
2.越小越相似
3.
4.
过程:
API
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
#include <opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;
string convertToString(double d);
int main(int argc, char** argv) {
Mat base, test1, test2;
Mat hsvbase, hsvtest1, hsvtest2;
base = imread("E://VS-pro//images//1.jpg");
if (!base.data) {
printf("could not load image...\n");
return -1;
}
test1 = imread("E://VS-pro//images//2.jpg");
test2 = imread("E://VS-pro//images//3.jpg");
//转换为HSV图像
cvtColor(base, hsvbase, COLOR_BGR2HSV);
cvtColor(test1, hsvtest1, COLOR_BGR2HSV);
cvtColor(test2, hsvtest2, COLOR_BGR2HSV);
int h_bins = 50; int s_bins = 60;
int histSize[] = { h_bins, s_bins };
// HSV - H hue varies from 0 to 179, saturation from 0 to 255
float h_ranges[] = { 0, 180 };//H的范围
float s_ranges[] = { 0, 256 };//S的范围
const float* ranges[] = { h_ranges, s_ranges };
// Use the o-th and 1-st channels
int channels[] = { 0, 1 };
MatND hist_base;
MatND hist_test1;
MatND hist_test2;
//计算归一化直方图
calcHist(&hsvbase, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false);
normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat());
calcHist(&hsvtest1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());
calcHist(&hsvtest2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());
//进行直方图结果比较
double basebase = compareHist(hist_base, hist_base, HISTCMP_CORREL);
double basetest1 = compareHist(hist_base, hist_test1, HISTCMP_CORREL);
double basetest2 = compareHist(hist_base, hist_test2, HISTCMP_CORREL);
double tes1test2 = compareHist(hist_test1, hist_test2, HISTCMP_CORREL);
printf("test1 compare with test2 correlation value :%f", tes1test2);
//将数值打印在图片上面
Mat test12;
test2.copyTo(test12);
putText(base, convertToString(basebase), Point(50, 50), FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
putText(test1, convertToString(basetest1), Point(50, 50), FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
putText(test2, convertToString(basetest2), Point(50, 50), FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
putText(test12, convertToString(tes1test2), Point(50, 50), FONT_HERSHEY_COMPLEX, 1, Scalar(0, 0, 255), 2, LINE_AA);
imshow("base", base);
imshow("test1", test1);
imshow("test2", test2);
imshow("test12", test12);
waitKey(0);
return 0;
}
string convertToString(double d) {
ostringstream os;
if (os << d)
return os.str();
return "invalid conversion";
}