lightoj1240:Point Segment Distance (3D)(三分)

本文介绍了一个计算三维空间中点到线段最短欧几里得距离的问题,并提供了一种通过三分法来求解该问题的有效算法实现。输入包括多个测试案例,每个案例包含线段两端点坐标及目标点坐标,输出则是各案例中点到线段的最短距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1240 - Point Segment Distance (3D)
Time Limit: 2 second(s)Memory Limit: 32 MB

Given a segment in 3D space, identified by A(x1, y1, z1), B(x2, y2, z2) and another point P(x, y, z) your task is to find the minimum possible Euclidean distance between the point P and the segment AB.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing nine integers x1, y1, z1, x2, y2, z2, x, y, z. The magnitude of any integer will not be greater than 100.

Output

For each case, print the case number and the distance. Errors less than 10-6 will be ignored.

Sample Input

Output for Sample Input

2

0 0 1 0 1 1 0 1 0

0 0 0 1 1 1 0 0 1

Case 1: 1

Case 2: 0.8164965809

 


PROBLEM SETTER: JANE ALAM JAN

题意:求点到线段的最短距离。

思路:距离变化为凸函数,可以用三分法解决。

# include <iostream>
# include <cstdio>
# include <cmath>
# include <vector>
# include <cstring>
# include <algorithm>
using namespace std;
double fun(double x, double y, double z, double a, double b, double c)
{
    return sqrt((x-a)*(x-a)+(y-b)*(y-b)+(z-c)*(z-c));
}
int main()
{
    int t, cas=1;
    double x1, y1, z1, x2, y2, z2, x, y, z;
    scanf("%d",&t);
    while(t--)
    {
        int k=100;
        scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf",&x1, &y1, &z1, &x2, &y2,&z2,&x, &y, &z);
        double lx=x1, ly=y1,lz=z1, rx=x2,ry=y2,rz=z2, midx, midy, midz;
        while(k--)
        {
            midx=(lx+rx)/2; midy=(ly+ry)/2; midz=(lz+rz)/2;
            double s1 = fun(midx, midy, midz, x, y, z);
            double mmidx=(midx+rx)/2, mmidy=(midy+ry)/2, mmidz=(midz+rz)/2;
            double s2 = fun(mmidx, mmidy, mmidz, x, y, z);
            if(s2 > s1)
            {
                rx = mmidx;
                ry = mmidy;
                rz = mmidz;
            }
            else
            {
                lx = midx;
                ly = midy;
                lz = midz;
            }
        }
        printf("Case %d: ",cas++);
        printf("%.10f\n", fun(midx, midy, midz, x, y, z));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值