Find The Multiple
Time Limit: 1000MS | Memory Limit: 10000K | |||
Total Submissions: 28780 | Accepted: 11935 | Special Judge |
Description
Given a positive integer n, write a program to find out a nonzero multiple m of n whose decimal representation contains only the digits 0 and 1. You may assume that n is not greater than 200 and there is a corresponding m containing no more than 100 decimal
digits.
Input
The input file may contain multiple test cases. Each line contains a value of n (1 <= n <= 200). A line containing a zero terminates the input.
Output
For each value of n in the input print a line containing the corresponding value of m. The decimal representation of m must not contain more than 100 digits. If there are multiple solutions for a given value of n, any one of them is acceptable.
Sample Input
2 6 19 0
Sample Output
10 100100100100100100 111111111111111111大意是给出一个数n,求出n的一个仅含0或1的倍数。
这是稍微暴力地深搜
# include <stdio.h>
int n, flag;
unsigned long long result;
void dfs(int step, unsigned long long sum)
{
int i;
if(sum % n == 0)
{
flag = 1;
result = sum;
return;
}
if(step == 19)
return;
for(i=0; i<=1; ++i)
{
sum = sum*10 + i;
dfs(step+1, sum);
sum = (sum-i)/10;
if(flag)
return;
}
}
int main()
{
while(scanf("%d",&n), n)
{
flag = 0;
dfs(1, 1);
printf("%llu\n",result);
}
return 0;
}
这是广搜的做法
# include <stdio.h>
# include <string.h>
struct node
{
int num, pre, sum;//pre记录父节点的下标
}a[300];
int main()
{
int b[300], vis[300], n, i, k, temp, head, tail, flag, result;
while(scanf("%d",&n),n)
{
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
memset(vis, 0, sizeof(vis));
k = flag = head = tail = 0;
a[head].num = 1;
a[head].sum = 1;
a[head].pre = -1;
while(head <= tail)
{
for(i=0; i<=1; ++i)
{
temp = (a[head].sum * 10 + i)%n;//同余定理
if(!vis[temp])//★排除重复的情况
{
++tail;
a[tail].pre = head;
a[tail].num = i;
a[tail].sum = temp;
vis[temp] = 1;
}
if(a[tail].sum == 0)
{
result = tail;
flag = 1;
break;
}
}
if(flag)
break;
++head;
}
while(a[result].pre != -1)//将路线节点的下标找出来
{
b[k++] = a[result].pre;
result = a[result].pre;
}
--k;
for(i=k; i>=0; --i)//将找出来的下标输出对应的值
{
printf("%d",a[b[i]].num);
}
printf("%d\n",a[tail].num);
}
return 0;
}