了解Java NIO
传统的并发型服务器设计是利用阻塞型网络I/O 以多线程的模式来实现的,然而由于系统常常在进行网络读写时处于阻塞状态,会大大影响系统的性能;自Java1. 4 开始引入了NIO(新I/O) API,通过使用非阻塞型I/O,实现流畅的网络读写操作,为开发高性能并发型服务器程序提供了一个很好的解决方案。这就是java nio。
传统阻塞型网络 I/O的不足
Java 平台传统的I/O 系统都是基于Byte(字节)和Stream(数据流)的,相应的I/O操作都是阻塞型的,所以服务器程序也采用阻塞型I/O 进行数据的读、写操作。传统的设计为了实现服务器程序的并发性要求,系统由一个单独的主线程来监听用户发起的连接请求,一直处于阻塞状态;当有用户连接请求到来时,程序都会启一个新的线程来统一处理用户数据的读、写操作。在阻塞的网络编程方式中,针对于每一个单独的网络连接,都必须有一个线程对应的绑定该网络连接,进行网络字节流的处理。看看以前传统写法:
try {
ServerSocket ssc = new ServerSocket(8086);
while (true) {
//阻塞
Socket s = ssc.accept();
try {
//每来一个客户端就开启一个读线程
new ReadThread(s).start();
//同时每来一个客户端就开启一个写线程
new WriteThread(s).start();
} catch (Exception e) {
e.printStackTrace();
}
}
} catch (IOException e) {
e.printStackTrace();
}
以上就是传统阻塞模式写法,在这段代码中,有三个阻塞的方法,是ServerSocket的accept()方法,InputStream的read()方式以及OutputStream的write()方式。因此我们需要三个的线程(主线程也是一个)分别进行处理,要每一个客户端分配二个线程来处理输入、输出数据。这样如果有大量的连接存在,就存在大量的线程,其线程与客户机的比例近似为1:1,随着线程数量的不断增加,服务器启动了大量的并发线程,会大大加大系统对线程的管理开销,这将成为吞吐量瓶颈的主要原因,而大量的线程又都阻塞在read()或者write()方法,同时CPU又需要来回频繁的在这些线程中间调度和切换,必然带来大量的系统调用和资源竞争。但传统模式的也是有它的优点的,优点就是简单、实用、易管理。
对于并发型服务器,系统用在阻塞型I/O 等待和线程间切换的时间远远多于CPU 在内存中处理数据的时间,因此传统的阻塞型I/O 已经成为制约系统性能的瓶颈。Java1.4 版本后推出的NIO 工具包,提供了非阻塞型I/O 的异步输入输出机制,为提高系统的性能提供了可实现的基础机制。
NIO 包及工作原理
针对传统I/O 工作模式的不足,NIO 工具包提出了基于Buffer(缓冲区)、Channel(通道)、Selector(选择器)的新模式;Selector(选择器)、可选择的Channel(通道)和SelectionKey(选择键)配合起来使用,可以实现并发的非阻塞型I/O 能力。
Buffer(缓冲器)
由于操作系统和应用程序数据通信的原始类型是byte,也是IO数据操作的基本单元,在NIO中,每一个基本的原生类型(boolean除外)都有Buffer的实现:CharBuffer、IntBuffer、DoubleBuffer、ShortBuffer、LongBuffer、FloatBuffer和ByteBuffer,数据缓冲使得在IO操作中能够连续的处理数据流。当前有两种ByteBuffer,一种是Direct ByteBuffer,另外一种是NonDirect ByteBuffer;ByteBuffer是普通的Java对象,遵循Java堆中对象存在的规则;而Direct ByteBuffer是native代码,它内存的分配不在Java的堆栈中,不受Java内存回收的影响,每一个Direct ByteBuffer都是直接分配的一块连续的内存空间,也是NIO提高性能的重要办法之一。另外数据缓冲有一个很重要的特点是,基于一个数据缓冲可以建立一个或者多个逻辑的视图缓冲(View Buffer).比方说,通过View Buffer,可以将一个Byte类型的Buffer换作Int类型的缓冲;或者一个大的缓冲转作很多小的Buffer。之所以称为View Buffer是因为这个转换仅仅是逻辑上,在物理上并没有创建新的Buffer。这为我们操作Buffer带来诸多方便。
Channel(通道)
包含socket,file和pipe三种管道,都是全双工的通道。Channel是一个与操作系统紧密结合的本地代码较多的对象,是(Buffer)缓冲器和I/O 服务之间的通道,具有双向性,既可以读入也可以写出,可以更高效的传递数据。我们这里主要讨论ServerSocketChannel 和SocketChannel,它们都继承了SelectableChannel,是可选择的通道,分别可以工作在同步和异步两种方式下(这里的可选择不是指可以选择两种工作方式,而是指可以有选择的注册自己感兴趣的事件)。当通道工作在同步方式时,它的功能和编程方法与传统的ServerSocket、Socket 对象相似;当通道工作在异步工作方式时,进行输入输出处理不必等到输入输出完毕才返回,并且可以将其感兴趣的(如:接受操作、连接操作、读出操作、写入操作)事件注册到Selector 对象上,与Selector 对象协同工作可以更有效率的支持和管理并发的网络套接字连接。
Selector(选择器)和SelectionKey(选择键)
各类Buffer是数据的容器对象;各类Channel实现在各类Buffer与各类I/O 服务间传输数据。Selector 是实现并发型非阻塞I/O 的核心,各种可选择的通道将其感兴趣的事件注册到Selector对象上,Selector在一个循环中不断轮循监视这各些注册在其上的Socket 通道。SelectionKey类则封装了SelectableChannel对象在Selector 中的注册信息。当Selector 监测到在某个注册的SelectableChannel上发生了感兴趣的事件时,自动激活产生一个SelectionKey对象,在这个对象中记录了哪一个SelectableChannel 上发生了哪种事件,通过对被激活的SelectionKey 的分析,外界可以知道每个SelectableChannel 发生的具体事件类型后,可进行相应的处理。
SelectionKey满足以下三个条件之一, Key 就失效:
Channel被关闭。
Selector被关闭。
通过调用Key的cancel()方法将Key本身取消。
NIO工作原理
通过上面的讨论,我们可以看出在并发型服务器程序中使用NIO,实际上是通过网络事件驱动模型实现的。我们应用Select机制,不用为每一个客户端连接新启线程处理,而是将客户端Socket连接注册到特定的Selector对象上,这就可以在单线程中利用Selector对象管理大量并发的网络连接,更好的利用了系统资源;采用非阻塞I/O的通信方式,不要求阻塞等待I/O 操作完成即可返回,从而减少了管理I/O 连接导致的系统开销,大幅度提高了系统性能。
当有读或写等任何注册的事件发生时,可以从Selector中获得相应SelectionKey,从SelectionKey 中可以找到发生的事件和该事件所发生的具体的SelectableChannel,以获得客户端发送过来的数据。由于在非阻塞网络I/O 中采用了事件触发机制,处理程序可以得到系统的主动通知,从而可以实现底层网络I/O无阻塞、流畅地读写,而不像在原来的阻塞模式下处理程序需要不断循环等待。使用NIO,可以编写出性能更好、更易扩展的并发型服务器程序。
应用 NIO 工具包,基于非阻塞网络I/O设计的并发型服务器程序与以往基于阻塞I/O的实现程序有很大不同,在使用非阻塞网络I/O的情况下,程序读取数据和写入数据的时机不是由程序员控制的,而是Selector 决定的。
通过使用NIO 工具包进行并发型服务器程序设计,一个或者很少几个Socket 线程就可以处理成千上万个活动的Socket 连接,大大降低了服务器端程序的开销;同时网络I/O 采取非阻塞模式,线程不再在读或写时阻塞,操作系统可以更流畅的读写数据并可以更有效地向CPU 传递数据进行处理,以便更有效地提高系统的性能。