下载Inception v-3模行 观察网络模型

本文介绍了一个Python脚本,用于下载并解压缩Inceptionv-3预训练模型。该脚本使用TensorFlow和requests库实现,还展示了如何通过TensorBoard查看模型结构。
部署运行你感兴趣的模型镜像

下面的代码是下载Incetion v-3的代码:

# coding: UTF-8
import tensorflow as tf
import os
import tarfile
import requests

# inception模型下载地址
inception_pretrain_model_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'

# 模型存放地址
inception_pretrain_model_dir = "inception_model"
if not os.path.exists(inception_pretrain_model_dir):
    os.makedirs(inception_pretrain_model_dir)

# 获取文件名,以及文件路径
filename = inception_pretrain_model_url.split('/')[-1]
filepath = os.path.join(inception_pretrain_model_dir, filename)

# 下载模型
if not os.path.exists(filepath):
    print("download: ", filename)
    r = requests.get(inception_pretrain_model_url, stream=True)
    with open(filepath, 'wb') as f:
        for chunk in r.iter_content(chunk_size=1024):
            if chunk:
                f.write(chunk)
print("finish:", filename)

# 解压文件
tarfile.open(filepath, 'r:gz').extractall(inception_pretrain_model_dir)

# 模型结构存放文件
log_dir = 'inception_log'
if not os.path.exists(log_dir):
    os.makedirs(log_dir)

# classify_image_graph_def.pb为google训练好的模型
inception_graph_def_file = os.path.join(inception_pretrain_model_dir, 'classify_image_graph_def.pb')

with tf.Session() as sess:
    with tf.gfile.FastGFile(inception_graph_def_file, 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        tf.import_graph_def(graph_def, name='')
    # writer = tf.summary.FileWriter(log_dir, sess.graph)
    writer = tf.train.SummaryWriter(log_dir, sess.graph)
    writer.close()

代码中有较好的注释,我们下面看一下Inception v-3的模型

tensorboard --logdir=file:///home/wuhao/PycharmProjects/Inceptionv-3/inception_log 




您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值