纯C++超分辨率重建LapSRN --改编--(四)偏置乘法

本文介绍MatConvNet框架中如何使用SGEMM进行偏置处理,详细解析了vl_impl_nnbias_forward_blas_CPU_float函数的具体实现,并讨论了在特定场景下乘法操作相较于加法可能带来的性能优势。

matconvnet使用sgemm乘法来处理偏置,难道乘法比加法速度更快,

    SGEMM 执行下面矩阵运算

     C := alpha * A  *  B + beta * C,

在处理偏置中为:
     C := A  *  B +  C,

其中:

A为值全部为1的一个矩阵块

B为1个值或有64个值(每个通道一个值)

C为图像矩阵(1通道或64通道)

在vl_nnconv中前面已经给出

下面是vl_nnconvt中的:

void vl_impl_nnbias_forward_blas_CPU_float(//vl::Context& context,
                              卷积层 * output, double outputMult,
                               double dataMult,
                              层数据 * filters_biases, double biasesMult)
{
  //int numOutputPixels = output.getHeight() * output.getWidth() ;
  int numOutputPixels = output->height * output->width ;
  float * allOnesMemory = new float[numOutputPixels * sizeof(float)]; //
  if (allOnesMemory == NULL) {
    printf("内存分配错误!"); ;
    goto done ;
  }

  {//设值为1
	  float * tt=allOnesMemory;
	  for(int i=0;i<numOutputPixels;i++)
	  {
		  *tt++  = 1;

	  }
  }

  float * biases=filters_biases-> 偏移_数据;
    double alpha = outputMult ;

    if (biases) {
      gemm(//context,
                              'n', 'n',
                              numOutputPixels,filters_biases->偏移长度 , 1,//biases.getNumElements()
                              biasesMult,
                              allOnesMemory, numOutputPixels,
                              (float*)biases, 1,
                              alpha,
                              (float*)output->data/*.getMemory() + outputOffset*/, numOutputPixels) ;
      alpha = 1 ;
    }

done:
  if (allOnesMemory != NULL) {
        delete []allOnesMemory;  allOnesMemory=NULL;  
  }
}


void vl_nnbias_forward(
                   卷积层 *  output, double outputMult,
                   /*vl::Tensor data,*/ double dataMult,
                   层数据 * filters_biases, double biasesMult)
{
      vl_impl_nnbias_forward_blas_CPU_float
      (
	  output, outputMult, /*data,*/ dataMult, filters_biases, biasesMult) ;
}

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值